首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While an aeration tank in an activated sludge process is often operated with high dissolved oxygen (DO) concentration to ensure organic degradation and nitrification, it may be operated at low DO concentration to reduce energy consumption and achieve desired denitrification. The ASM1 (Activated Sludge Model No. 1) can be used to describe the activated sludge process if the nitrification and denitrification occur either during different phases or in different tanks, but it may encounter problems in simulating the denitrification phenomenon caused by low DO concentration in the aeration tank. In the present work, we developed a model integrating the ASM1 kinetics and a biofloc model to account for the actual anoxic and aerobic rates. Oxygen was assumed the only substrate of both bio-kinetically and flux limiting in the flocs and its dispersion coefficient was estimated as 1.2 × 10−4 m2 day−1 by using a set of measured effluent qualities of a full-scale wastewater treatment plant (WWTP) operating at low DO concentration (∼0.80 mg L−1) for 60 days. Simulation studies predicted the optimal DO level of 0.36 mg L−1 which would lead to minimum total nitrogen of 15.7 mg N L−1 and also showed the insignificance of the addition of carbon source for nitrogen removal for the operation under study. The developed model may be helpful for process engineers to predict the plant behaviors under various configurations or operating strategies.  相似文献   

2.
This paper attempts to provide insight into the biological ammonium oxidation process applied to high-strength ammonium wastewater treatment. The ammonium oxidation process has been investigated at various ammonium and biomass concentrations. Using the oxygen uptake rate (OUR) method, a proportion of both active ammonium oxidizers (AAO) and nitrite oxidizers to the total suspended solids were separately estimated, and then tested to normalize the ammonium oxidation rate at various ammonium strengths and AAO concentrations. High-ammonium strength showed no significant inhibition to ammonium oxidation due to high-AAO concentration. It was demonstrated that the key factor deciding the specific ammonium oxidation rate was the ratio of ammonium concentration to the active nitrifiers (AN) concentration, but not the sole-variable such as initial ammonium concentration and AN concentration. Contois model was screened to suitably fit the ammonium oxidation kinetics under the high-ammonium loading condition, resulting in a half-saturation constant of 0.028 mg N mg?1 AAO and a maximum specific ammonium oxidation rate of 3.56 g N g?1 AAO d?1.  相似文献   

3.
《Process Biochemistry》2007,42(3):320-328
A shortcut biological nitrogen removal (SBNR) process converts ammonium directly through nitrite to nitrogen gas, thus requiring less aeration and carbon. We evaluated a hybrid SBNR (HSBNR) reactor containing an anoxic tank followed by an aerobic tank and a settling tank. The aerobic tank was filled with polyvinyl alcohol sponge media (20%, v/v) to attach and retain ammonium oxidizers. Two configurations of the HSBNR reactor were tested for treating a wastewater with high strength ammonium and organic electron donor. The HSNBR reactors accumulated nitrite stably for 1.5 years and maintained a high free ammonia (FA) concentration (20–25 mg/L) and a low dissolved oxygen (DO) concentration (<1 mg/L) in the aerobic tank. Apparently, the biofilm carriers increased the solids retention time (SRT) for ammonium oxidizers, while high FA and low DO selected against nitrite oxidizers and promoted direct denitrification of nitrite in the aerobic tank. The significant amount of chemical oxygen demand (COD) was removed by shortcut denitrification of nitrite in the anoxic tank.  相似文献   

4.
Plants of miscanthus were grown in a Cd-free solution up to 1 month before heading and then were exposed to 0, 0.75, 1.5, 2.25 and 3 mg l−1 cadmium for 36 days. All cadmium levels were toxic to miscanthus. Growth response was not dose-dependent and two toxicity thresholds were identified: one between 0 and 0.75 mg l−1 Cd, the other between 2.25 and 3 mg l−1 Cd. The former caused a biomass decrease by about 50%, whereas the latter completely inhibited growth and disrupted the mechanisms that restricted Cd translocation to the shoot. Growth of the aerial part was affected by cadmium more than that of the hypogeal one. Cadmium did not change the N concentration of different plant parts, but markedly reduced the N uptake of the plant, the N net uptake rate (NUR) and the N net translocation rate (NTR) from the rhizome to the aerial part. These two indexes equalled zero when plants ceased to grow. Otherwise, the Cd-NUR increased with Cd supply and the Cd-NTR from rhizome to aerial part showed the highest increment when plants did not grow at all. This suggests different uptake pathways for the two elements, active for nitrogen and passive for cadmium. The Cd concentration and the Cd content markedly increased with all Cd levels, following the order roots  rhizome > culms > leaves. The Cd concentration and the Cd content of aerial organs increased with Cd supply, but increments were highest between 2.25 and 3 mg l−1 Cd. The highest Cd concentrations were recorded in plants grown with 3 mg l−1 Cd and were 41 and 122 mg kg−1, respectively, for the aerial and the hypogeal plant parts. The hypogeal plant part retained most of the cadmium taken up from solution, accounting for approximately 87% of total plant cadmium with the three lower Cd levels, and for 73% with the highest one. The maximum Cd content of the entire plant was achieved with the two higher Cd levels and was approximately 4.7 mg, while the Cd content of the aerial part was highest with 3 mg l−1 Cd (1.2 mg Cd per plant) and that of the hypogeal one with 2.25 mg l−1 Cd (4 mg Cd per plant). The highest aerial content achieved in this experiment was 10-fold that obtained in a previous research when small-sized plants were exposed to the same Cd level.  相似文献   

5.
The feasibility of the anaerobic ammonium oxidation (Anammox) process to treat wastewaters containing antibiotics was studied in this work. Concentrations ranging from 100 to 1000 mg L?1 for tetracycline hydrochloride and from 250 to 1000 mg L?1 for chloramphenicol were tested in batch assays. A strong inhibitory effect was observed for both antibiotics.A concentration of 20 mg L?1 of chloramphenicol was continuously added to an Anammox Sequential Batch Reactor (SBR) system, causing a decrease of the nitrogen removal efficiency of 25%. The Specific Anammox Activity (SAA) of the biomass also decreased from 0.25 to 0.05 g N (g VSS d)?1. Similar effects were observed when 50 mg L?1 of tetracycline hydrochloride were continuously fed. Both antibiotics did not cause any changes in the physical properties of the biomass. A previous degradation step could be necessary in order to treat wastewaters containing inhibitory concentrations of antibiotics by the Anammox process.  相似文献   

6.
In soil, high variability of U bioavailability results in large range of apparent U toxic levels for plants. U toxicity on hairy roots of carrot was studied in nutrient gel with a standardized in vitro device. After exposure to 2.5 and 20 mg U L?1 for 34 days, U concentration ranged between 4 and 563 mg U kg?1 fresh weight which was in good accordance with U accumulation by roots of plant from contaminated soils. Threshold of U toxicity for root length decreased with time and a transient hormesis occurred for exposure to 2.5 and 5 mg U L?1. After 34 days and with root length as endpoint, significant toxicity appeared at a gel contamination level above 7.5 mg U L?1 corresponding to a maximum U concentration in the liquid phase of 0.8 mg L?1. The calculated EC50 for root length as a function of gel contamination was 9.4 mg U L?1. Lower threshold and EC50 were observed for biomass as endpoint (resp. 5 and 7.3 mg U L?1). The low values observed in this study could result from high sensitivity of carrot to U, high bioavailability of U in gel or absence of interferences with microorganisms. This in vitro device appeared adapted to study toxicity of U to plant roots in optimal conditions of both exposure and observations and is recommended to examine further physiological processes and the influence of microorganism interactions.  相似文献   

7.
Azadinium spinosum, a small dinoflagellate isolated from the North Sea, is a producer of azaspiracids (AZAs), a group of biotoxins associated with human illness following ingestion of contaminated shellfish. Using batch and continuous cultures of A. spinosum, the present study investigated the effects of different environmental and nutritional factors (salinity, temperature, photon flux density, aeration, culture media, nitrogen sources, phosphate source, and N/P ratios) on growth, maximum cell concentration, and AZA cell quota.Azadinium spinosum grew in a wide range of conditions; from 10 ̊C to 26 ̊C and salinities from 30 to 40, under irradiances ranging from 50 μmol m−2 s−1 to 250 μmol m−2 s−1, with or without aeration. Growth and maximum cell concentration were highest at a salinity of 35, at temperatures between 18 ̊C and 22 ̊C, and with aeration. Concerning AZA cell quota, the most significant effect was observed at low temperature; the AZA cell quota was more than 20 times higher at 10 ̊C (220 fg cell−1) than at temperatures between 18 ̊C and 26 ̊C. A. spinosum grew on all media tested with only slight differences in growth rate and AZA cell quota. In continuous culture, lowering the concentration of nutrients (0.5 strength of a modified K-medium) in the inflow improved AZA cell quota whereas higher concentration (doubling the normal strength of K-medium) improved maximal cell concentration. A. spinosum grew on different sources of nitrogen tested (nitrate, urea, ammonium) with almost no effect on toxin cell quota and growth, except that adding ammonium caused a decrease in growth.These first experiments on Azadinium spinosum increased our knowledge on factors affecting its growth and toxin production; furthermore, these results allowed and improved particularly A. spinosum production in pilot scale photobioreactors for AZA isolation.  相似文献   

8.
Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One radical approach for removing non-point source nutrients before they reach the bay is to deploy large-scale algal turf scrubbers along its tributaries. The objective of this study was to determine rates of nutrient removal and algal fatty acid production using small ATS units located along three Chesapeake Bay rivers. Small-scale ATS units (each containing 1 m2 growing area) were operated for 5–10 months from April 2007 to April 2008 on three western shore tributaries of the Chesapeake Bay in Maryland: the Bush River, the Patapsco River and the Patuxent River. Total nitrogen (TN) and total phosphorus (TP) removal rates at the Patuxent site fluctuated considerably but averaged 250 mg TN, 45 mg TP m?2 day?1 from May to October 2007, then decreased to 16 mg TN, 3 mg TP m?2 day?1 from December 2007 to February 2008. Nutrient removal rates at the Bush river site also fluctuated but averaged only 85 mg TN, 10 mg TP m?2 day?1 from May to June 2007, before decreasing to <10 mg TN, <1 mg TP m?2 day?1 from July to September 2007. The Patapsco River unit began operation in August 2007, reached its maximum removal values of 150 mg TN, 18 mg TP m?2 day?1 from mid-October to late-November 2007, then decreased to values of 45 mg TN, 4 mg TP m?2 day?1 from November 15, 2007 to mid-April 2008. In the best case (Patuxent site from May to October 2007), daily removal rates of 250 mg N and 45 mg P m?2 are equivalent to removal rates of 380 kg N and 70 kg P ha?1 over a 150-day season in Maryland. Fatty acid (FA) content of the harvested material was consistently low (0.3–0.6% of dry weight) and varied little between sites. Mean algal FA production rates (23–54 mg FA m?2 day?1) are equivalent to rates of 34–81 kg FA ha?1 year?1 based on a 150-day operational season in Maryland.  相似文献   

9.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

10.
Duckweeds, as a group, are important early warning indicators for the assessment of contaminated ecosystems due to their propensity to accumulate pollutants. In the present study, we investigated the potential use of Lemna gibba L. (Lemnaceae) as an ecological indicator for boron (B) mine effluent containing B concentration above 10 mg l−1. For this purpose, L. gibba fronds were grown for 7 days in simulated water contaminated with B mine effluent. The important note is that this study was carried out in Kırka (Eskişehir, Turkey) B reserve area, which is the largest borax reserve in all over the world, under natural climatic conditions in the field. The results demonstrated that accumulations of B by L. gibba gradually increased based on the initial B concentrations (10, 25, 50, 100, and 150 mg l−1) of the mine effluent. B concentration in the dry weight of the plant reached 639 mg kg−1 when the minimum initial dosage (10 mg l−1) was applied and 2711 mg kg−1 when the maximum initial dosage (150 mg l−1) was applied during the study. However, significant reductions in their relative growth rates occurred in 50, 100 and 150 mg l−1 initial B concentrations. Results suggest that 25 mg l−1 B concentration in water seemed to be a sensitive endpoint for L. gibba that could be used as a critical bioindicator level of B contaminated water. Following our data, we also constructed a simple growth model under the climatic conditions in this region of Turkey, but in instructive as a worldwide model. L. gibba is, therefore, suggested to be able to use as both an indicator and a phytoremediation tool because of its high accumulation capacity for B contaminated water.  相似文献   

11.
《Ecological Engineering》2007,29(2):192-199
Trees integrated into the range- and pasturelands of Florida could remove nutrients from deeper soil profiles that would otherwise be transported to water bodies and cause pollution. Soil nitrogen (N) and phosphorus (P) concentrations were monitored in three pastures: a treeless pasture of bahiagrass (Paspalum notatum); a pasture of bahiagrass under 20-year-old slash pine (Pinus elliotti) trees (silvopasture); and a pasture of native vegetation under pine trees (native silvopasture). Soil analysis from 10 profiles within each pasture showed that P concentrations were higher in treeless pasture (mean: 9.11 mg kg−1 in the surface to 0.23 mg kg−1 at 1.0 m depth) compared to silvopastures (mean: 2.51 and 0.087 mg kg−1, respectively), and ammonium–N and nitrate–N concentrations were higher in the surface horizon of treeless pasture. The more extensive rooting zones of the combined stand of tree + forage may have caused higher nutrient uptake from silvopastures than treeless system. Further, compared to treeless system, soils under silvopasture showed higher P storage capacity. The results suggest that, compared to treeless pasture, silvopastoral association enhances nutrient retention in the system and thus reduces chances for nutrient transport to surface water. The study reflects the scope for applying ecological-engineering and ecosystem-restoration principles to silvopastoral-system design.  相似文献   

12.
A combined ammonia gas absorption and nitrification was conducted in a single bioscrubber. The reactor was consisted of a bubble column (gas absorption) and a packed bed (nitrification) which contained poly-urethane foams with immobilized nitrifying activated sludge. The entering gas and scrubbing liquid were contacted countercurrently. The bubble column elimination capacity (EC) was 26.74 g NH3/m3 h at >99% ammonia gas removal and effluent gas concentration lower than 2 ppmv. Without ammonium supplement, EC can reach 35.66 g NH3/m3 h which is equivalently the highest tolerable ammonia loading rate of 700 g N/m3 day (1650 mg N/L) at the packed bed. At this level, 593 g N/m3-day ammonia removal rate was achieved via nitrification, dominated by ammonia oxidation. Partial recycling (R/Q = 0.5) of scrubbing solution reduced the secondary wastewater volume by producing 233% more concentrated nitrified products. Hydraulic retention time (HRT) of 24 h was found optimal for both processes (gas absorption and nitrification).  相似文献   

13.
This study investigated the characteristics of nitrous oxide (N2O) emission from intermittently aerated sequencing batch reactors (IASBRs) treating high strength slaughterhouse wastewater at 11 °C, where partial nitrification followed by denitrification (PND) was achieved. N2O generation and emission was examined at three aeration rates of 0.4, 0.6, and 0.8 L air/min in three IASBRs (SBR1, SBR2, and SBR3, respectively). The slaughterhouse wastewater contained chemical oxygen demand (COD) of 6057 ± 172.6 mg/L, total nitrogen (TN) of 576 ± 15.1 mg/L, total phosphorus (TP) of 52 ± 2.7 mg/L and suspended solids (SS) of 1843 ± 280.5 g/L. In the pseudo-steady state, the amount of N2O emission was up to 5.7–11.0% of incoming TN. The aeration rate negatively affected N2O emission and the ratio of N2O emission to incoming TN was reduced by 48.2% when the aeration rate was increased from 0.4 to 0.8 L air/min. Results showed that more N2O was generated in non-aeration periods than in aeration periods. Lower DO concentrations enhanced N2O generation in the aeration periods (probably via nitrifier denitrification) while low DO concentrations (lower than 0.2 mg/L) did not affect N2O generation in the non-aeration periods (probably via heterotrophic denitrification). When PHB was utilized as the organic substrate for denitrification, there was a high N2O generation potential. It was estimated that 1.8 mg N2O-N was generated accompanying per mg PHB consumed.  相似文献   

14.
The effect of aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor was investigated. B. trispora formed hyphae, zygophores and zygospores during the fermentation. The zygospores were the morphological form responsible for β-carotene production. Both aeration and agitation significantly affected β-carotene concentration, productivity, biomass and the volumetric mass transfer coefficient (KLa). The highest β-carotene concentration (1.5 kg m−3) and the highest productivity (0.08 kg m−3 per day) were obtained at low impeller speed (150 rpm) and high aeration rate (1.5 vvm). Also, maximum productivity (0.08 kg m−3 per day) and biomass dry weight (26.4 kg m−3) were achieved at high agitation speed (500 rpm) and moderate aeration rate (1.0 vvm). Conversely, the highest value of KLa (0.33 s−1) was observed at high agitation speed (500 rpm) and high aeration rate (1.5 vvm). The experiments were arranged according to a central composite statistical design. Response surface methodology was used to describe the effect of impeller speed and aeration rate on the most important fermentation parameters. In all cases, the fit of the model was found to be good. All fermentation parameters (except biomass concentration) were strongly affected by the interactions among the operation variables. β-Carotene concentration and productivity were significantly influenced by the aeration, agitation, and by the positive or negative quadratic effect of the aeration rate. Biomass concentration was principally related to the aeration rate, agitation speed, and the positive or negative quadratic effect of the impeller speed and aeration rate, respectively. Finally, the volumetric mass transfer coefficient was characterized by the significant effect of the agitation speed, while the aeration rate had a small effect on KLa.  相似文献   

15.
A bench- and a pilot-scale anaerobic/aerobic system were evaluated for the treatment of high strength tomato-processing wastewater. The pilot-scale anaerobic tank achieved better prefermentation of organic carbon and nitrogen than the bench-scale system, although overall system performance was comparable with more than 99% SBOD removal and 97% SCOD removal. Hydraulic retention time (HRT) and temperature effects were studied in the bench-scale system. Increase of anaerobic HRT from 0.25 day to 0.5 day favored prefermentation and a better effluent quality was achieved, as demonstrated by reduction in TSS concentrations from 66 mg/L to 24 mg/L, SCOD from 103 mg/L to 78 mg/L and SBOD from 8 mg/L to 6 mg/L, respectively. Specific oxygen uptake rate (SOUR) increased from 0.15–0.23 mg O2/mg VSS day at 25 °C to 0.67–1.24 mg O2/mg VSS day at 32 °C. Settling characteristics deteriorated from sludge volume index (SVI) of 24–131 mL/g at 25 °C to 115–173 mL/g at 32 °C. Sludge yield decreased from 0.14 g VSS/g COD at 25 °C to 0.098 g VSS/g COD at 32 °C.  相似文献   

16.
The coupled system of partial nitrification and anaerobic ammonium oxidation (Anammox) is efficient in nitrogen removal from wastewater. In this study, the effect of different oxygen concentrations on partial nitrification performance with a sequencing batch reactor (SBR) was investigated. Results indicate that, partial nitrification of landfill leachate could be successfully achieved under the 1.0–2.0 mg L−1 dissolved oxygen (DO) condition after 118 d long-term operation, and that the effluent is suitable for an Anammox reactor. Further decreasing or increasing the DO concentration, however, would lead to a decay of nitrification performance. Additionally, the MLSS concentration in the reactor increased with increasing DO concentration. Respirometric assays suggest that low DO conditions (<2 mg L−1) favor the ammonia-oxidizing bacteria (AOB) and significantly inhibit nitrite oxidizing bacteria (NOB) and aerobic heterotrophic bacteria (AHB); whereas high DO conditions (>3 mg L−1) allow AHB to dominate and significantly inhibit AOB. Therefore, the optimal condition for partial nitrification of landfill leachate is 1.0–2.0 mg L−1 DO concentration.  相似文献   

17.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

18.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

19.
Phosphorus (P) accumulation in a closed recirculating aquaculture system (RAS) was studied using a goldfish tank as a model. It was found that the accumulated P in this system was soluble inorganic phosphates (Pi) and the highest concentration was up to 8 mg P/L after 40 days of fish cultivation. Phosphorus in the water was increased linearly with the rate of 0.19 mg P/L/day. A mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 (ΔSphU) that lacks the SphU regulator of the Pho regulon could decrease Pi in the wastewater of RAS to the concentration below the P detection limit of 0.01 mg P/L at the rate of 2.07 ± 0.33 mg P/h g DW. This was corroborated by the increase of cellular polyphosphate and P content in the ΔSphU strain as revealed by fluorescence microscopy. After the first cycle of P removal, the cyanobacterial cells were recovered from wastewater by cell flocculation using chitosan. The flocculated cells could be reused for efficient P removal for the next 3 cycles.  相似文献   

20.
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+–N concentration of 1 mg L?1 in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus L. The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+–N concentration of 1 mg L?1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L?1 NH4+–N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity, active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ stress and shading, NH4+ is scavenged by FAA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号