首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

2.
《Process Biochemistry》2014,49(4):673-680
Strain Trichoderma koningii D-64 was improved for enhanced cellulase production. A potential mutant MF6 was obtained and its enzymes contained filter paper cellulase (FPase), carboxymethylcellulase (CMCase), β-glucosidase and xylanase with respective activities of 2.0, 1.3, 2.0 and 3.0 folds of those for the parental strain. MF6 cellulases showed enhanced hydrolysis performance for the treated lignocellulosic biomass. Hydrolysis of treated oil palm empty fruit bunch (OPEFB), horticulture wastes (HW) and wood chips (WC) resulted in cellulose to glucose conversion of 96.3 ± 2.2%, 98.2 ± 3.0% and 81.9 ± 1.4%, respectively. The corresponding conversions of xylan to xylose were 96.9 ± 1.5%, 95.0 ± 2.2% and 76.1 ± 3.1%. Consistently, high sugar yield of 770–844 mg/g biomass was obtained for high-loading (10–16%, w/v) of OPEFB hydrolysis and sugar titer of 135.1 g/L was obtained for 16% (w/v) OPEFB loading at 96 h. In addition, MF6 enzymes alone performed equally well for high-loading OPEFB hydrolysis compared to the enzyme mixture of β-glucosidase from Aspergillus niger and cellulase from T. reesei Rut C30.  相似文献   

3.
Direct utilization of untreated oil palm trunk (OPT) for cellulases and xylanase production by Aspergillus fumigatus SK1 was conducted under solid-state fermentation (SSF). The highest activities of extracellular cellulases and xylanases were produced at 80% moisture level, initial pH 5.0, 1 × 108 spore/g (inoculum) with 125 μm of OPT as sole carbon source. The cellulases and xylanase activities obtained were 54.27, 3.36, 4.54 and 418.70 U/g substrates for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and xylanase respectively. The crude cellulases and xylanase required acidic condition to retain their optimum activities (pH 4.0). Crude cellulases and xylanase were more stable at 40 °C compared to their optimum activities conditions (60 °C for FPase and 70 °C for CMCase, β-glucosidase and xylanase). SDS-PAGE and zymogram analysis showed that Aspergillus fumigatus SK1 could secrete cellulases (endoglucanase, exoglucanase and β-glucosidase), xylanase and protease. Enzymatic degradation of alkaline treated OPT with concentrated crude cellulases and xylanases resulted in producing polyoses.  相似文献   

4.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

5.
《Process Biochemistry》2014,49(5):768-774
Fungal genome sequencing has revealed the presence of multiple putative β-glucosidases; however, information regarding these new β-glucosidases is limited. A new β-glucosidase from Penicillium piceum, designated as PpCel3E, was first isolated and characterized. Using p-nitrophenyl-β-d-glucoside as substrate, PpCel3E showed the lowest Km among the β-glucosidases among all fungi studied. Moreover, PpCel3E exhibited a high transglycosylation activity of 1100 mg gentiobiose/mg and 142 mg sophorose/mg using glucose as the donor. PpCel3E is a novel bifunctional glycoside hydrolase with both β-glucosidase and β-xylosidase activity. Our results show that PpCel3E plays an important role in forming soluble cellulose inducer compounds, as well as in amplifying weak cellulase inducer signal and hemicellulase synthesis via its high transglycosylation activity. Supplementing PpCel3E at low concentrations (40 μg/g substrate) increased the saccharification efficiency of different cellulases by 20% to 27% by removing multiple inhibitors.  相似文献   

6.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

7.
Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which is a non-alignment based method for sequence analysis to map conserved sequences in glycoside hydrolase families. The conserved sequences were used to identify similar genes in the M. circinelloides genome. We found 12 different novel genes encoding members of the GH3, GH5, GH9, GH16, GH38, GH47 and GH125 families in M. circinelloides. One of the two GH3-encoding genes was predicted to encode a β-glucosidase (EC 3.2.1.21). We expressed this gene in Pichia pastoris KM71H and found that the purified recombinant protein had relative high β-glucosidase activity (1.73 U/mg) at pH5 and 50 °C. The Km and Vmax with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.20 mM and 2.41 U/mg, respectively. The enzyme was not inhibited by glucose and retained 84% activity at glucose concentrations up to 140 mM. Although zygomycetes are not considered to be important degraders of lignocellulosic biomass in nature, the present finding of an active β-glucosidase in M. circinelloides demonstrates that enzymes from this group of fungi have a potential for cellulose degradation.  相似文献   

8.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

9.
《Process Biochemistry》2014,49(8):1217-1222
An integrated process has been developed, consisting of the “adsorption–separation” of cellulase enzymes to selectively remove β-glucosidase, and multi-stage enzymatic hydrolysis of corncob residues from xylo-oligosaccharides manufacture with the β-glucosidase deficient cellulase, aiming to obtain a high yield of cello-oligosaccharides production. After the “adsorption–separation” process, 79.50% of the endo-glucanase was retained in substrate, whereas 90.67% of β-glucosidase was removed with the separated liquid fraction, utilizing the different adsorbability of these enzymes to the substrate. A three-stage enzymatic hydrolysis of corncob residues with the β-glucosidase deficient cellulase was proposed in which the first, the second and the third stage were conducted for 6, 6 h and 12 h, respectively. Analysis indicated that the removal of hydrolysis products (glucose and cello-oligosaccharides) at each stage improved cello-oligosaccharides productivity and enzymatic hydrolysis yield. The cello-oligosaccharides yield and enzymatic hydrolysis yield in three-stage enzymatic hydrolysis were significantly improved to 51.78% and 75.56%, respectively, which were 36.00% and 25.10% higher than single-stage hydrolysis with original cellulase enzymes.  相似文献   

10.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

11.
《Process Biochemistry》2014,49(10):1630-1636
The present work describes the secretome profiling of a phytopathogenic fungus, Phoma exigua by liquid chromatography coupled tandem mass spectrometry (LC–MS/MS) based proteomics approach to highlight the suites of enzymes responsible for biomass hydrolysis. Mass spectrometry identified 33 proteins in the Phoma secretome when grown on α-cellulose as the sole carbon source. The functional classification revealed a unique extracellular enzyme system mainly belonging to the family of glycosyl hydrolase proteins (52%). This hydrolytic system consisted of cellulases (endo-1,4-β-glucanase, cellobiohydrolase I, exoglucanase, and β-glucosidase), hemicellulases (1,4-β-xylosidase and endo-1,4-β-xylanase) and other hypothetical proteins including GH3, GH5, GH6, GH7, GH11, GH20, GH32 and GH54. The synergistic action of this enzyme cocktail was assessed by the saccharification of alkali treated wheat straw. Since the Phoma secretome has limited β-glucosidase activity, it was supplemented with commercial β-glucosidase. After supplementation, this enzyme complex resulted in high yields of glucose (177.2 ± 1.0 mg/gds), xylose (209.2 ± 1.5 mg/gds) and arabinose (25.2 ± 0.3 mg/gds). The secretome analysis and biomass hydrolysis by P. exigua revealed its unique potential as a source of hydrolytic enzymes for lignocellulosic biomass hydrolysis.  相似文献   

12.
Sugarcane bagasse is a residue with great potential as a feedstock for second-generation ethanol production. One of the approaches studied for making use of this material is the utilization of enzymes to hydrolyze the cell wall carbohydrates and generate fermentable sugars. These enzymes can be produced by cultivation of filamentous fungi or bacteria; however, the high production cost still represents a bottleneck to second-generation ethanol production. Expression of recombinant hydrolases through a co-culture strategy could be an interesting alternative for producing a recombinant cocktail at high levels of productivity that is tailor-made for each material to be hydrolyzed. In this study we evaluate the production of hydrolases by co-culturing two recombinant Escherichia coli, each expressing a specific hydrolase, β-1,3-1,4-glucanase or β-1,4-xylanase, both isolated from Bacillus subtilis. The cultures were conducted in bioreactors in batch and fed-batch mode in order to reach high cell densities. Co-culture in batch cultivation reached a dry cell weight of 10.4 g/L and volumetric activities of 31.96 U/mL and 11.89 U/mL for xylanase and endoglucanase, respectively. Fed-batch cultivation reached a dry cell weight of 60 g/L and the volumetric activities of xylanase and endoglucanase were respectively up to 5 and 1.3 times higher than those in batch mode. A competition assay indicates that no clone predominates over the other during cultivation. These results suggest that co-culture is a potential technique for producing recombinant hydrolase cocktails at lower cost than those associated with the production of a single culture.  相似文献   

13.
A new strain Trichoderma koningii D-64 was isolated from Singapore soil samples. It produced cellulase, xylanase, and laccase on a variety of carbon sources. Enzyme activities of 3.8 ± 0.3, 40.3 ± 5.1, 6.6 ± 0.3 and 98.8 ± 10.3 U/mL were respectively obtained for FPase, CMCase, β-glucosidase and xylanase in a mixture of 1% cellulose and 2% wheat bran. About 70–95% saccharification efficiency of oil palm empty fruit bunch was obtained using T. koningii D-64 enzymes alone without the supplement of any other commercial enzymes. Strain T. koningii D-64 is therefore a potential cellulase producer for the efficient lignocellulosic biomass conversion to fermentable sugars.  相似文献   

14.
《Process Biochemistry》2007,42(7):1101-1106
The thermophilic fungus Thermoascus aurantiacus 179-5 and the mesophilic Aureobasidium pullulans ER-16 were cultivated in corn-cob by solid state fermentation for β-glucosidase production. After fermentation both enzymes were purified. The β-glucosidases produced by the strains A. pullulans and T. aurantiacus were most active at pH 4.0–4.5 and 4.5, with apparent optimum temperatures at 80 and 75 °C, respectively. Surprisingly, the enzyme produced by the mesophilic A. pullulans was stable over a wider range of pH (4.5–9.5 against 4.5–6.5) and more thermostable (98% after 1 h at 75 °C against 98% after 1 h at 70 °C) than the enzyme from the thermophilic T. aurantiacus. The t(1/2) at 80 °C were 90 and 30 min for A. pullulans and T. aurantiacus, respectively. β-Glucosidase thermoinactivation followed first-order kinetics and the energies of denaturation were 414 and 537 kJ mol−1 for T. aurantiacus and A. pullulans, respectively. The result showed that β-glucosidase obtained from the mesophilic A. pullulans is more stable than that obtained from the thermophilic T. aurantiacus.  相似文献   

15.
A novel β-glucosidase (G-II) was purified to homogeneity from a culture filtrate of the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-II specifically cleaved the β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, but did not hydrolyze the other β-d-glucosidic linkages in protopanaxadiol-type ginsenosides. In specificity tests, G-II was active against pNPG and disaccharides such as cellobiose and gentiobiose, but exhibited very low activities against other aryl-glycosides and methyl-α-glycosides. G-II consisted of two identical subunits with a native molecular mass of 180 kDa and a pI of 4.4. The optimal pH of G-II was pH 5.5, and the enzyme was highly stable over a range of pH 5.0–11.0. The optimal temperature was 45 °C, and the enzyme became unstable at temperatures above 40 °C. The Km and Vmax values against pNPG were 0.19 mM and 57.7 μmol/(min mg), respectively. The enzyme was inhibited by Zn2+, Cu2+ (over 50 mM) and SDS (250 mM). However, the inhibition by SDS was partially reversed by 10 mM dithiothreitol. Three oligopeptide fragments obtained after enzymatic digestion of G-II were sequenced by nanoESI-MS/MS. The amino acid sequence homology analysis showed that G-II possessed significant homology with the family 3 β-glucosidases.  相似文献   

16.
《Process Biochemistry》2010,45(6):897-903
G-I, a highly selective β-glucosidase, was purified from phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-I was a monomer with native molecular weight of 85 kDa and pI value of 4.2. The maximal activity to p-nitrophenyl-β-d-glucopyranoside (pNPG) occurred at pH 6.0 and 45 °C at which the Km against pNPG was 0.18 mM and Vmax was 46.7 μmol nitrophenol/min/mg. G-I was highly stable within pH 4.0–11.0 and below 40 °C. It was inhibited by Co2+, Cu2+ and Zn2+ (50 mM), but showed resistance to sodium dodecyl sulfonate (SDS, 250 mM). G-I was highly active against β-linked disaccharide cellobiose, gentiobiose and sophorose, but exhibited very low activities against other aryl-glycosides, methyl-α-glycosides and disaccharides trehalose and sucrose. Moreover, G-I specifically hydrolyzed β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, without attack on other β-d-glucosidic linkages. The oligopeptide fragments of G-I were sequenced by nanoESI-MS/MS and showed similarity to the sequences from the glycoside hydrolase family 3. G-I is different to G-II (a glycosidase previously purified from the same fungus) in composition and molecular weight. It shows more stable and higher selectivity than G-II.  相似文献   

17.
There is growing interest in developing high-yield and low-cost production of xylanolytic enzymes for industrial applications using agroindustrial byproducts. A native strain of Aspergillus niger GS1 was used to produce β-xylosidase (EC 3.2.1.37) on solid state fermentation using corn pericarp (CP) with innovative alkaline electrolyzed water (AEW) pretreatment at room temperature. β-xylosidase was purified by ammonium sulfate fractionation followed by anion exchange and hydrophobic interaction chromatographies. β-Xylosidase showed a molecular weight of 111 kDa, isoelectric point of 5.35 and specific activity of 386.7 U (mg protein)?1, using p-nitrophenyl-β-d-xylopyranoside as substrate, at pH 5 and 60 °C, and optimal activity at pH 4.5. Optimal temperature was 65 °C, showing full activity after 1 h at 60 °C. Activity was reduced by 1 mM β-mercaptoethanol (55.6 ± 0.1%), and enhanced by 1 mM SDS (11.0 ± 0.03%). Km and Vmax were 6.1 ± 0.9 mM and 1364 ± 105 U (mg protein)?1, respectively, whereas kcat was 5.1 s?1. A predominant α-helix (41%) was determined from circular dichroism on β-xylosidase, while thermal transition profiles produced a Tm of 54.1 ± 5.8 °C, enthalpy change for unfolding of 67.4 ± 6.7 kJ/mol, and onset temperature of 37 °C. Pre-treatment of CP using AEW is an ecologically friendly alternative to chemical and heat treatments for the production of relatively high levels of β-xylosidase.  相似文献   

18.
A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50 = 156.06 μM), 4f (IC50 = 147.94 μM), 4k (IC50 = 127.71 μM) and 4l (IC50 = 121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50 = 130.98 μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5 kcal/mol respectively, compared to that of acarbose (−8.9 kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.  相似文献   

19.
An improved mutant was isolated from the cellulolytic fungus Stachybotrys sp. after nitrous acid mutagenesis. It was fed-batch cultivated on cellulose and its extracellular cellulases (mainly the endoglucanases and β-glucosidases) were analyzed. One β-glucosidase was purified to homogeneity after two steps, MonoQ and gel filtration and shown to be a dimeric protein. The molecular weight of each monomer is 85 kDa. Besides its aryl β-glucosidase activity towards salicin, methyl-umbellypheryl-β-d-glucoside (MUG) and p-nitrophenyl-β-d-glucoside (pNPG), it showed a true β-glucosidase activity since it splits cellobiose into two glucose monomers. The Vmax and the Km kinetics parameters with pNPG as substrate were 78 U/mg and 0.27 mM, respectively. The enzyme shows more affinity to pNPG than cellobiose and salicin whose apparent values of Km were, respectively, 2.22 and 37.14 mM. This enzyme exhibits its optimal activity at pH 5 and at 50 °C. Interestingly, this activity is not affected by denaturing gel conditions (SDS and β-mercaptoethanol) as long as it is not pre-heated. The N-terminal sequence of the purified enzyme showed a significant homology with the family 1 β-glucosidases of Trichoderma reesei and Humicola isolens even though these two enzymes are much smaller in size.  相似文献   

20.
《Journal of Asia》2014,17(1):67-71
While screening for cellulase-producing fungi from insect gut, a fungus with high endoglucanase (carboxymethyl cellulase; CMCase) activity was isolated from the larval gut of Bombyx mori. Based on morphological characteristics and using an 18S rRNA-based molecular phylogenetic approach, the fungus, strain BMC-2, was identified as a Mucor sp. expressing a novel alkalotolerant cellulase. The maximum production of cellulase by the BMC-2 strain was observed at 55 °C and pH 8.0. The CMCase activity was inhibited by Cu2 + > Na+ > Zn2 + > Mg2 + > Ba2 +, and induced by Ca2 +, Mn2 +, Fe2 +, and K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号