首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周宁一 《微生物学通报》2014,41(8):1698-1698
<正>雄黄(Realgar,As4S4)是一种含砷的硫化物,作为一种中药砷剂已有上千年的历史。近年来,雄黄治疗血液系统疾病、恶性淋巴系统疾病取得了明显的疗效,引起人们广泛的关注[1]。雄黄的传统制备方法包括酸提、煅烧、膜分离,以及机械研磨等[2-3],然而这些方法炮制的雄黄水溶性低、胃肠道吸收差、毒性高以及生物利用度低的缺点严重限制了它的临床应用[4]。生物浸出(Bioleaching)是一种从低品位矿物中提取金属  相似文献   

2.
Bioleaching is an economical method for the recovery of metals that requires low investment and operation costs. Furthermore, it is generally more environmentally friendly than many physicochemical metal extraction processes. The bioleaching of chalcopyrite in shake flasks was investigated with pure and mixed cultures of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidithiobacillus caldus, and Leptospirillum ferriphilum. The mixed cultures containing both iron- and sulfur-oxidizing bacteria were more efficient than the pure culture alone. The presence of sulfur-oxidizing bacteria positively increased the dissolution rate and the percentage recovery of copper from chalcopyrite. Mixed cultures consisting of moderately thermophilic L. ferriphilum and A. caldus leached chalcopyrite more effectively than mesophilic A. ferrooxidans pure and mixed cultures. The decrease of the chalcopyrite dissolution rate in leaching systems containing A. ferrooxidans after 12–16 days coincided with the formation of jarosite precipitation as a passivation layer on the mineral surface during bioleaching. Low pH significantly reduces jarosite formation in pure and mixed cultures of L. ferriphilum and A. caldus.  相似文献   

3.
An aerobic, continuous-flow fluidized-bed reactor was established with inoculum from activated sludge, and fed a mixture of 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) as the sole sources of carbon and energy for 2 years. Experiments with the enrichment were performed with material from the reactor. Later, degradation experiments were completed using pure cultures of bacteria that were isolated from suspended samples of the carrier biofilm. In batch-bottle bioassays, the reactor enrichment degraded PCP, TeCP and TCP both in mineral salts (MS) and tryptone-yeast extract-glucose (TGY) media. ortho-Methoxylated chlorophenols including 4,5-dichloroguaiacol (4,5-DCG), tetrachloroguaiacol (TeCG) and trichlorosyringol (TCS) resisted biodegradation by the enrichment both in MS and TGY media, whereas 5,6-dichlorovanillin (5,6-DCV) was readily transformed to an unidentified metabolite. Experiments with 14C labeled chlorophenols showed mineralization of 2,4-dichlorophenol (DCP) and 2,3,5-TCP to 14CO2 by the enrichment. Material from the suspended biofilm after continuous chlorophenol feeding for 2 years was inoculated onto TGY-agar plates, and showed predominantly two colony, types accounting for over 99% of the total colony counts. The two colony types, were equal in abundance. Six Gram-negative, oxidase- and catalase-positive, non-fermentative small rods were isolated in TGY agar media supplemented with 10 mg/l of TeCP or PCP. All isolates formed colonies in TGY plus 150 mg/l of PCP. The isolates degraded TCP and TeCP but not PCP. In mixtures of isolated bacteria the rates of chlorophenol degradation were similar to those observed with individual isolates. Three isolates were identified as Pseudomonas saccharophila and three were an unidentified species of Pseudomonas.  相似文献   

4.
Summary An anaerobic enrichment culture that degraded 0.4 mmol/l per day of o-phenylphenol was selected from sediment of a waste water pond of a sugar factory. From the consortium an o-phenylphenol-degrading bacterium, strain B10, was isolated. Strain B10 could not degrade other aromatic substances, including phenylacetic acid, benzoate, o-hydroxybenzoate, p-hydroxybenzoate and phenol. Best growth was observed with glucose, pyruvate, lactate, methanol and H2/CO2 as substrates. o-Phenylphenol was slowly degraded if supplied as the only carbon source and was cometabolized in the presence of >5 mmol/l glucose. Strain B10 has not yet been assigned to a known species or family.  相似文献   

5.
The ability to remove inorganic phosphate from synthetic wastewater was tested with about 40 microbial strains, and Pseudomonas aeruginosa IAM 1007 was found to give good performance under aerobic conditions. However, the phosphate removal under batch anaerobic/aerobic (A/O) treatment was not satisfactory in pure cultures of several strains including P. aerginosa, and Aceinetobacter calcoaceticus, but the activated sludge from a plant with an A/O process almost depleted the phosphate. Mixed cultures of P. aeruginosa in the presence of the facultativelu anaerobic strains of A-1 or A-8 isolated from the activated sludge showed enhanced phosphate removal. This suggests a symbiotic effect among microbial species on biological removal of inorganic phosphate in the A/O process.  相似文献   

6.
Chen P  Yan L  Leng F  Nan W  Yue X  Zheng Y  Feng N  Li H 《Bioresource technology》2011,102(3):3260-3267
The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.  相似文献   

7.
Summary By enrichment technique, nine anaerobic mixed bacterial cultures were isolated, five of which showed stable cellulolysis. All cultures fermented cellulose and produced different fermentative products. Mixed culture BOC 25 yielded major levels of acetate and ethanol (39.6 and 12.0 mmol/l, respectively) and minor levels of propionate (2.5 mmol/l) and digested filter paper cellulose to the extent of 32.5% w/v. BOC 25 digested cellulosic and lignocellulosic substrates and produced filter paper cellulase, carboxymethyl cellulase, Avicelase and -glucosidase. Strain DC 25, a cellulolyticClostridium was purified from one of the mixed cultures. The fermentation products of DC 25 from cellulose, cellobiose or glucose were ethanol, acetate, formate, H2 and CO2.  相似文献   

8.
Summary A phenylacetic acid-degrading mixed culture was enriched from effluent of an anaerobic reactor for the treatment of waste water from cellulose bleaching. From this consortium a phenylacetic acid-degrading pure culture, strain DSU3, was isolated and, due to its typical morphology and substrate spectrum, tentatively classified as a Desulfosarcina sp. It could grow on and degrade phenylacetic acid, cyclohexane carboxylate, cyclohexylacetate, benzoate, fumaric acid and several volatile fatty acids, while phenol, o-hydroxybenzoate, p-hydroxybenzoate and glucose were not utilized. Production of mandelic acid from phenylacetic acid by the enrichment culture and utilization of benzoate, an intermediate of the mandelic acid pathway, by strain DSU3 may presumably indicate degradation of phenylacetic acid via the mandelic acid pathway.  相似文献   

9.
The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.  相似文献   

10.
Biodegradation characteristics of 2,4- and 2,6-dinitrotoluenes (DNTs) individually by pure strains and defined mixed cultures obtained from a mixed culture isolated from a slate packed bed bioreactor is described. Batch degradation experiments were carried out with free cells in submerged cultivations. The degradation rate and efficiency of five best individual bacterial strains, bacterial consortia comprising three and five of these strains, and the complete mixed culture were evaluated and compared. All the strains showed ability to degrade both the DNTs. All but one strain degraded both DNTs at the same rate. The degradation rate as well as the degradation efficiency by the mixed cultures was higher than that by the individual strains. The complete mixed culture showed 15-20x higher degradation rate than the individual bacterial strains.  相似文献   

11.
Summary Out of seven chlorinated aliphatic hydrocarbons tested, only trans-1,2-dichloroethene was relatively non-toxic for a mixed methanotrophic culture. The compound was degraded at a rate of 0.4 mol/mg protein·h-1 and liberation of inorganic chloride was observed. Trans-2,3-dichlorooxirane was formed as an intermediate which was converted further only by chemical transformation with a half life of 31 h. From the consortium, a pure culture was isolated and found to be capable of degradation of trans-1,2-dichloroethene when grown in the presence of methane or methanol. The ability of cometabolic degradation of this compound was not specific for this isolate, since Methylomonas methanica NCIB11130 and Methylosinus trichosporium OB3b also showed degradation of trans-1,2-dichloroethene when grown with methane as sole carbon source.Abbreviations t12DCE trans-1,2-dichloroethene - t23DCO trans-2,3-dichlorooxirane - c23DCO cis-2,3-dichlorooxirane - 1H-NMR proton nuclear magnetic resonance  相似文献   

12.
Summary A comparative study of iron removal at 30–60 C and pH 4–9 by pure (Aeromonas sp.) and mixed culture of iron resistant microbes (FMC) showed maximum efficiency of 45% (pH-8, 40 C) and 90% (pH-9, 40C) respectively in 60–72 h using a synthetic ferric citrate medium containing 650 mg/l Fe(III) with ammonium chloride as nitrogen source.  相似文献   

13.
Continuous culture experiments with identical experimental designs were run with a mixed microbial community of activated sludge origin and an axenic bacterial culture derived from it. Each culture received 2-chlorophenol (2-CP) at a concentration of 160 mg/L as COD and L-lysine at a concentration of 65 mg/L as COD. A factorial experimental design was employed with dilution rate and media composition as the two controlled variables. Three dilution rates were studied: 0.015, 0.0325, and 0.05 h–1. Media composition was changed by adding four biogenic compounds (butyric acid, thymine, glutamic acid and lactose) in equal COD proportions at total concentrations of 0, 34, 225, and 1462 mg/L as COD. The measured variables were the effluent concentrations of 2-CP as measured by the 4-aminoantipyrene test and lysine as measured by the o-diacetylbenzene procedure. The results suggest that community structure and substrate composition play important roles in the response of a microbial community to mixed substrates. The addition of more biogenic substrates to the axenic culture had a deleterious effect on the removal of both lysine and 2-CP, although the effect was much larger on lysine removal. In contrast, additional substrates had a positive effect on the removal of 2-CP by the mixed community and much less of a negative effect on the removal of lysine. The dilution rate at which the cultures were growing had relatively little impact on the responses to the additional substrates.Abbreviations COD chemical oxygen demand - 2-CP 2-chlorophenol - DOC dissolved organic carbon - MDL method detection limit - SS suspended solids  相似文献   

14.
Poly(beta-hydroxybutyrate) or PHB is an important member of the family of polyhydroxyalkanoates with properties that make it potentially competitive with synthetic polymers. In addition, PHB is biodegradable. While the biochemistry of PHB synthesis by microorganisms is well known, improvement of large-scale productivity requires good fermentation modeling and optimization. The latter aspect is reviewed here. Current models are of two types: (i) mechanistic and (ii) cybernetic. The models may be unstructured or structured, and they have been applied to single cultures and co-cultures. However, neither class of models expresses adequately all the important features of large-scale non-ideal fermentations. Model-independent neural networks provide faithful representations of observations, but they can be difficult to design. So hybrid models, combining mechanistic, cybernetic and neural models, offer a useful compromise. All three kinds of basic models are discussed with applications and directions toward hybrid model development.  相似文献   

15.
A method is described for the first time for rapid and accurate discrimination among several algal types by their light-scattering properties alone. Using a multiangle light-scattering flow system, we obtained light-scatter patterns for individual cells in asynchronous cultures of Chlorella, Chlamydomonas, and Anacystis. The patterns are consistent and distinct for each species. By these signatures, each algal type can be recognized within mixtures.  相似文献   

16.
Degradation and detoxification of a mixture of persistent compounds (2-chlorophenol, phenol and m-cresol) were studied by using pure and mixed indigenous cultures in aerobic reactors. Biodegradation assays were performed in batch and continuous flow reactors. Biodegradation was evaluated by determining total phenols, ultraviolet spectrophotometry and chemical oxygen demand (COD). Microbial growth was measured by the plate count method. Scanning electronic microscopy was employed to observe the microbial community in the reactor. Detoxification was evaluated by using Daphnia magna toxicity tests. Individual compounds were degraded by pure bacteria cultures within 27 h. The mixture of 2-clorophenol (100 mgl−1), phenol (50 mgl−1) and m-cresol (50 mgl−1) was degraded by mixed bacteria cultures under batch conditions within 36 h: 99.8% of total phenols and 92.5% of COD were removed; under continuous flow conditions 99.8% of total phenols and 94.9% of COD were removed. Mineralization of phenolic compounds was assessed by gas chromatography performed at the end of the batch assays and in the effluent of the continuous-flow reactor. Toxicity was not detected in the effluent of the continuous-flow reactor.  相似文献   

17.
Summary Thirty-three fermentations of Pedro Ximénez grapes, collected in three degrees of ripeness, were carried out by inoculation with three types of inoculum: pure cultures ofSaccharomyces cerevisiae races and ofTorulaspora delbrueckii, indigenous yeasts, and mixed cultures of indigenous yeasts enriched with the pure cultures. By means of variance analysis 21 compounds were determined whose final concentrations in the wines significantly depended on the musts, the inocula or both. Eleven products that depended significantly on the inocula were subjected to a discriminant analysis in which most of the pure cultures gathered in a discriminant space area different from that occupied by the indigenous yeasts. The centroids corresponding to most of the mixed cultures were shifted to the central area of the discriminant space, moved away from their corresponding pure cultures and approached the indigenous yeasts. The results show a high similarity between the fermentations carried out with mixed cultures with the addedS. cerevisiae races and those fermentations carried out with the indigenous yeasts, with regard to those compounds which were significantly dependent on the inocula.  相似文献   

18.
Summary The growth of Spirillum volutans in mixed culture was studied and liquid media were developed in which it grew rapidly and attained populations of over a million cells per ml. By taking advantage of their rapid and unidirectional motility, spirilla were separated from the mixed population by migration in capillary tubes. Pure cultures were achieved by growing the separated spirilla inside of dialysis sacks in contact with mixed cultures on the outside, and also by growth in an asparagine-mineral salts medium supplemented with an extract of Escherichia coli.Dedicated to Professor E. G. Pringsheim on his 80th birthday.This investigation was supported in part by grant G 9882 from the National Science Foundation.  相似文献   

19.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

20.
Methanogenesis from furfural by defined mixed cultures   总被引:1,自引:0,他引:1  
Methanogenesis from furfural by defined mixed cultures was studied. Under sulfate-reducing conditions, a Desulfovibrio strain was used as the furfural-degrading species producing acetic acid. This sulfate-reducing bacterium (SRB) Desulfovibrio strain B is an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates, leaving acetic acid as the end product. Introduction of acetate-utilizing methanogenic archaeon Methanosarcina barkeri 227 converted acetic acid to methane. This well-defined mixed consortium used furfural as its sole source of carbon and converted it to methane and CO2. In the mixed culture, when a methanogen inhibitor was used in the culture medium, furfural was converted to acetic acid by the Desulfovibrio strain B, but acetic acid did not undergo further metabolism. On the other hand, when the growth of Desulfovibrio in the consortium was suppressed with a specific SRB inhibitor, namely molybdate, furfural was not degraded. Thus, the metabolic activities of both Desulfovibrio strain B and M. barkeri 227 were essential for the complete degradation of furfural. Received: 15 August 2001 / Accepted: 20 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号