首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lacto-N-tetraose (Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) is one of the most abundant oligosaccharide structures in human milk. We recently described the synthesis of lacto-N-tetraose by a whole-cell biotransformation with recombinant Escherichia coli cells. However, only about 5% of the lactose was converted into lacto-N-tetraose by this approach. The major product obtained was the intermediate lacto-N-triose II (GlcNAc(β1-3)Gal(β1-4)Glc).In order to improve the bioconversion of lactose to lacto-N-tetraose, we have investigated the influence of the carbon source on the formation of lacto-N-tetraose and on the intracellular availability of the glycosyltransferase substrates, UDP-N-acetylglucosamine and UDP-galactose. By growth of the recombinant E. coli cells on D-galactose, the yield of lacto-N-tetraose (810.8 mg L−1 culture) was 3.6-times higher compared to cultivation on D-glucose.Using fed-batch cultivation with galactose as sole energy and carbon source, a large-scale synthesis of lacto-N-tetraose was demonstrated. During the 26 h feeding phase the growth rate (μ = 0.05) was maintained by an exponential galactose feed. In total, 16 g L−1 lactose were fed and resulted in final yields of 12.72 ± 0.21 g L−1 lacto-N-tetraose and 13.70 ± 0.10 g L−1 lacto-N-triose II. In total, 173 g of lacto-N-tetraose were produced with a space-time yield of 0.37 g L−1 h−1.  相似文献   

2.
Sequential optimization strategy based on statistical experimental designs was employed to enhance glucan production by Leuconostoc dextranicum NRRL B-1146 in flask culture. A two-level Plackett–Burman design was employed first where 11 variables were studied for their influence on glucan production. Sucrose, peptone and yeast extract were the most significant variables improving glucan production. A three-level Box–Behnken factorial design was employed for maximizing the glucan production. A mathematical model was developed to show the effects of each medium component and their combinatorial interactions on glucan production. The optimal medium composition for maximum glucan production was sucrose 5.95%, peptone 0.52% and yeast extract 2.9%. This composition predicted 1063 mg/l glucan, the experimentally found glucan was 1015 ± 4.5 mg/l that showed a good agreement with the predicted value. The purified glucan was homogenous and its structural characteristics investigated by FT-IR, 1H NMR and 13C NMR spectroscopic techniques showed that it contained α-(1  6) and α-(1  4) linkages.  相似文献   

3.
Thirty two morphologically different bacterial were isolated from different soil samples and screened for their ability to produce lipolytic enzymes. Among all isolates, the isolate coded AZ1 was selected due to its high potency to produce lipase at elevated temperature up to 65 °C. Phylogenetic analysis based on 16SrDNA sequence revealed its close relationship to Geobacillus thermodenitrificans. The effect of ten culture variable on lipase production was evaluated by implementing Plackett–Burman statistical design. d-sucrose, peptone and soy bean flour were the most significant variables affecting lipase production. A pre-optimized medium based on this experiment yielded an enzyme activity of 260 U min?1 ml?1. For further optimization, a fourteen trials’ multi-factorial Box–Behnken experimental design was applied to find out the optimum level of each of the significant variables. The tested variables, namely: d-sucrose (X1); peptone (X2) and soy bean flour (X3) were examined, each at three different levels coded ?1, 0, +1. The optimal levels of the three components were founded to be (g/L): d-sucrose, 6.56; peptone, 6.35; and soy bean flour, 6.92, with a predicted activity of approximately 610 U min?1 ml?1. According to the results of the Plackett–Burman and Box–Behnken designs the following medium composition is expected to be optimum (g/L): d-sucrose 6.56, peptone 6.35, soy bean flour 6.92, CaCl2 0.02, Y.E. 2.5, K2HPO4 1.0, MgSO4.7H2O 0.2 and Fe2 (SO4)3 0.02; pH, 8; cultivation temperature 55 °C and incubation time 24 h, the enzyme activity measured in the medium was approximately 593 U min?1 ml?1.  相似文献   

4.
Multifunctional redox-active pyocyanin (PYC) produced by Pseudomonas aeruginosa has diverse biotechnological applications, but no efforts have been made to improve its yield. The yield obtained in initial study using Pseudomonas spp. MCC 3145 was 24.21 mg L−1 PYC in pigment production medium D; hence, optimization of the media components using statistical tools for more production of PYC was undertaken. Of the 11 medium constituents screened for PYC production using Plackett–Burman design (PBD), glycerol, peptone, and CuSO4 were recognized as the most significant variables. The optimal concentration of the variables for maximum PYC production was evaluated using a five-level three-factor central composite design (CCD). Optimal concentration of the three variables, glycerol, peptone and CuSO4 showed 313.94 ± 10.09 mg L−1 the PYC production, with an 18-fold increase. Fine structural details of PYC were verified by chromatographic and various spectroscopic analyses. In vitro bioactivity studies demonstrated significant antifungal activity of PYC against fungal phytopathogens and substantial cytostatic activity against four major cancer cell lines. Furthermore, PYC displayed nonspecific DNA intercalation, which may be the reason for proliferation arrest in cancer cells. Thus, the study rigorously improved PYC production through medium optimization and further demonstrated its agricultural and therapeutic applications.  相似文献   

5.
This study investigated the feasibility of improving the stereospecificity of yeast by the adjustment of the culture medium composition and the reaction conditions. The investigation was performed systematically, using an approach that integrates the Taguchi's array method and the steepest ascent method. The reaction yield and the product's ee were the two indexes of reaction performance. A desirability function was applied to combine these two indexes as a single objective function. The removal of peptone and malt extract from the YM medium increased the yeast's stereoselectivity, without reducing the production of biomass. The medium composition and the reaction conditions were then simultaneously optimized. The resulting optimal conditions were 30 g/l glucose for cultivation, 12 g/l yeast extract, a cultivation time of 12 h, 15 g/l glucose for reaction, 150 g/l yeast for reaction, a reaction buffer concentration of 0.2 M and a buffer pH of 8.5. Compared to the one before this study, the product's ee was improved from 82.1 to 92.3%, and the reaction yield was enhanced from 77.3 to 82.3%. Furthermore, the biomass production was increased considerably from 5.94 to 10.14 g DCW/l.  相似文献   

6.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

7.
《Process Biochemistry》2004,39(11):1415-1419
The white-rot fungus Pleurotus ostreatus strain 32 is an excellent producer of the industrially important enzyme laccase. Laccase was the only ligninolytic activity detected in the supernatant when the fungus was grown in liquid culture with or without shaking. Growth and laccase production in static cultivation were superior to that in agitated cultivation, and N-limited culture is of benefit to laccase production. When using cellobiose and peptone as carbon and nitrogen source, a higher activity level was obtained. 2,2′-Azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) (1 mM) was shown to be the best inducer of laccase production, reaching maximum values of about 400 U/ml. Cu2+ (1 mM) also had a positive effect on laccase production, activity being enhanced to 360 U/ml. In addition, anthraquinone dye SN4R can be effectively decolorized by crude laccase (30 U/ml), the rate of which was 66%. The decolorization rate was increased by 90% with ABTS (0.16%) addition as a mediator of laccase.  相似文献   

8.
《Process Biochemistry》2007,42(5):878-883
Medium compositions for the production of the novel derivatives of FR-008/Candicidin which was produced by a mutant of Streptomyces sp. FR-008 were optimized using two statistical methods including Plackett–Burman design (P–B), which was applied to find the key ingredients for the best medium composition, and response surface methodology (RSM), which was used to determine the optimal concentrations of these components. Results indicated that peptone, copper sulfate and glycerol had significant effects on the production. Under the proposed optimized conditions, the CS101 experimental yield (191.259 mg/L) closely matched the yield (203.536 mg/L) predicted by the statistical model. The optimization of the medium contributed to 10-fold higher antibiotic production than that of the control. It was first revealed that copper could stimulate FR-008/Candicidin and their derivatives synthesis at an optimal concentration in this paper, moreover, the basis of this phenomenon was also explained by investigating the enhancement of the enzymatic pathways.  相似文献   

9.
To enhance laccase yield, the laccase gene from Bacillus vallismortis fmb-103 was cloned and heterologously expressed in Escherichia coli BL21 (DE3) cells. The auto-induction strategy was applied during fermentation, and the process was controlled, as follows: Cu2+ was added when the optical density at 600 nm (OD600) was 0.3, the fermentation temperature was adjusted to 16 °C when the OD600 was 0.9, and fermentation was stopped after 50 h. The yield of recombinant laccase was up to 3420 U/L, as assayed by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Recombinant laccase was purified 4.47-fold by heating for 10 min at 70 °C and dialyzing against 50–60% ammonium sulfate, retained more than 50% activity after 10 h at 70 °C, and demonstrated broad pH stability. Malachite green was efficiently degraded by recombinant laccase, especially in combination with mediators. These results provided a basis for the future application of recombinant laccase to malachite green degradation.  相似文献   

10.
Spent coffee grounds (SCG) represent the main coffee industry residues with a great potential to be reutilized in various biotechnological processes. In this study, several carotenogenic yeasts strains were exploited for the production of vitamin-enriched biomass, cultivating in SCG-based media. The fermentation was firstly carried out in Erlenmeyer flasks in order to select the best biomass and pigment producer. Among four tested strains, Sporobolomyces roseus showed the highest potential for the accumulation of carotenoids. Maximum pigment concentration and yield was obtained when cultivating in SCG-based media, 12.59 mg l−1 and 1.26 mg g−1, respectively. Comparing both, the batch and the fed-batch cultivation modes, the strategy of sequential addition of pre-concentrated SCG media in the bioreactor gave higher biomass yield (maximum 41 g l−1 during 41–48 h after the beginning of fermentation). Thus, SCG can be considered as potentially promising industrial waste stream for economically feasible production of enriched yeasts biomass.  相似文献   

11.
《Process Biochemistry》2007,42(10):1391-1397
Fermentation parameters for biomass and DHA production of Schizochytrium limacinum OUC88 in a fermenter (working volume 7 L) were optimized using Plackett–Burman and central composite rotatable design. Out of 10 factors studied by Plackett–Burman design, 4 influenced the biomass production significantly. Central composite rotatable design was used to optimize the significant factors and response surface plots were generated. Using these response surface plots and point prediction, optimized values of the factors were determined as follows temperature (°C) 23 °C, aeration rate 1.48 L min−1 L−1, agitation 250 rpm and inoculum cells in mid-exponential phase, the maximum yield of DCW and DHA were 24.1 and 4.7 g L−1, respectively. These predicted values were also verified by validation experiments.  相似文献   

12.
《Process Biochemistry》2010,45(3):297-305
Pure glycerol and glycerol-rich product (GRP) obtained from the biodiesel industries were used as carbon source for the production of a new extracellular polysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682. The influence of temperature (20–40 °C) and pH (6.0–8.0) was studied. A temperature of 30 °C and pH control at 6.8 gave the maximum cell growth and EPS production. The culture attained a maximum cell dry weight (CDW) of 9.55 g l−1 and an EPS concentration of 11.82 g l−1 when cultivated with pure glycerol. GRP was a suitable carbon source, as shown by the slightly higher EPS concentration (12.18 g l−1). The EPS productivity obtained with GRP (3.85 g l−1 d−1) was almost twice that obtained with pure glycerol (2.00 g l−1 d−1). Also, the yield on glycerol was higher for the cultivation with GRP (0.36 g g−1) than for pure glycerol (0.28 g g−1). The EPS was a high molecular weight heteropolysaccharide, composed by neutral sugars (37–80 wt% galactose, 2–30 wt% glucose, 0.5–25 wt% mannose and 0.5–20 wt% rhamnose) and containing acyl group substituents (pyruvil, acetyl and succinyl were identified). The EPS forms highly viscous aqueous dispersions with many potential commercial applications.  相似文献   

13.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

14.
《Process Biochemistry》2010,45(5):617-626
A new keratinolytic enzyme-producing bacterium was isolated from slaughter house polluted water and identified as Bacillus pumilus A1. Medium composition and culture conditions for the keratinases production by B. pumilus A1 were optimized using two statistical methods: Plackett–Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: feathers meal, soy peptone, NaCl, KCl, and KH2PO4. The medium optimization resulted in a 3.4-fold increase in keratinase production (87.73 U/ml) compared to that of the initial medium (25.9 U/ml). The zymography analysis shows the presence of at least five keratinolytic enzymes. The keratinolytic activity of the extracellular proteinases was examined by incubation with non-autoclaved chicken feathers. Complete solubilisation of whole feathers was observed after a 6-h incubation at temperatures ranging from 45 °C to 60 °C. The crude enzyme exhibited maximal activity at 60 °C and pH 8.5 or 55 °C and pH 9.0 using casein or keratin as substrates, respectively.  相似文献   

15.
《Process Biochemistry》2010,45(9):1494-1503
Lactose, an inexpensive, soluble substrate, offers reasonably good induction for cellulase production by Trichoderma reesei. The fungus does not uptake lactose directly. Lactose is hydrolyzed to extracellular glucose and galactose for subsequent ingestion. The roles of this extracellular hydrolysis step were investigated in this study. Batch and continuous cultures were grown on the following substrates: lactose, lactose–glycerol mixtures, glucose, galactose, and glucose–galactose mixtures. Cell growth, substrate consumption, lactose hydrolysis, and lactase and cellulase production were followed and modeled. Cells grew much faster on glucose than on galactose, but with comparable cell yields. Glucose (at >0.3 g/L) repressed the galactose consumption. Cellulase synthesis was growth-independent while lactase synthesis was growth-dependent, except at D < ∼0.065 h−1 where a basal level lactase production was observed. For cellulase production the optimal D was 0.055–0.065 h−1 where the enzyme activity and productivity were both near maxima. The model suggested that lactase synthesis was subject to weak galactose repression. As the galactose concentration increased at high D (>0.1 h−1), lactase synthesis became repressed. The insufficient lactase synthesis limited the lactose hydrolysis rate. Extracellular lactose hydrolysis was concluded to be the rate-limiting step for growth of T. reesei Rut C30 on lactose.  相似文献   

16.
A microbial consortium attached onto a polyethylene support was used to evaluate the simultaneous oxidation of sulfide and phenol by denitrification. The phenol, sulfide and nitrate loading rates applied to an inverse fluidized bed reactor were up to 168 mg phenol–C/(l d), 37 mg S2?/(l d) and 168 mg NO3?–N/(l d), respectively. Under steady state operation the consumption efficiencies of phenol, sulfide and nitrate were 100%. The N2 yield (g N2/g NO3?–N) was 0.89. The phenol was mineralized resulting in a yield of 0.82 g bicarbonate–C/g phenol–C and sulfide was completely oxidized to sulfate with a yield of 0.99 g SO42?–S/g S2?. 16S rRNA gene-based microbial community analysis of the denitrifying biofilm showed the presence of Thauera aromatica, Thiobacillus denitrificans, Thiobacillus sajanensis and Thiobacillus sp. This is the first work reporting the simultaneous oxidation of sulfide and phenol in a denitrifying biofilm reactor.  相似文献   

17.
《Process Biochemistry》2007,42(2):275-278
Gray mold caused by Botrytis cinerea is an important disease of strawberry. Clonostachys rosea is a mycoparasite of B. cinerea that reduces fruit losses when used as a biocontrol agent. Since spore production by C. rosea has not been optimized, we investigated factors affecting sporulation under aseptic conditions on white rice grains. The greatest spore production in glass flasks, 3.4 × 109 spores/g-dry-matter (gDM), occurred with an initial moisture content of 46% (w/w wet basis), inoculated with 1 × 106 spores/gDM and hand shaken every 15 days. However, a lower inoculum density (9 × 103 spores/gDM) and no shaking also gave acceptable sporulation. In plastic bags 1.1 × 108 spores/gDM were produced in 15 days, suggesting that larger scale production may be feasible: with this spore content, 24 m2 of incubator space would produce sufficient spores for the continued treatment of 1 ha of strawberry plants.  相似文献   

18.
The aim of this study was to determine if decanter cake waste from a palm oil mill could be used as a renewable substrate for biobutanol production. Decanter cake waste was first hydrolyzed to fermentable sugars by nitric acid and detoxified by activated-charcoal. The detoxified hydrolysate supplemented with whey protein and ammonium sulfate as cheap nitrogen sources, was used for butanol production by growing cells of Clostridium beijerinckii. The detoxified hydrolysate was also used as a co-substrate for direct conversion of butyric acid to butanol in a nitrogen-free medium. By these two steps, C. beijerinckii produced 3.42 g/L of butanol with a yield of 0.28 C-mol butanol/C-mol carbon in the first step and produced 6.94 g/L of butanol with a yield of 0.47 C-mol butanol/C-mol carbon in the second step. This study has showed that decanter cake waste could serve as a low-cost substrate for biobutanol production.  相似文献   

19.
A performance study and a nitrogen balance study (2×3 factorial) were conducted to investigate the interaction between lactose level (215 and 125 g/kg) (lactofeed 70; 860 g whey permeate/kg, 140 g soya bean meal/kg, Volac International, UK) and crude protein (CP) concentration (160, 185 and 210 g/kg) on post-weaning piglet performance, nitrogen metabolism, faecal microbiology and faecal volatile fatty acid concentrations. In the performance trial, 252 piglets (7.6 kg; 33 days of age) were assigned to one of six dietary treatments following a 12-day period on a commercial creep diet (17 MJ/kg DE, 16 g lysine/kg). The experimental diets were fed for 28 days (days 12–40) and were formulated to have identical digestible energy (15 MJ/kg) and total lysine (14.5 g/kg) contents. In the N balance experiment, 24 boars (20 kg live weight) were offered the same diets as in the performance trial. Faecal samples were collected for selected microbial populations. There was an interaction (P<0.05) between lactose and CP concentration in daily gain (ADG) and daily feed intake (ADFI) (P<0.01) during the weaner period (days 12–40). At the high lactose level there was a linear increase in ADG and ADFI with increasing CP. However, at the low lactose level there was no increase in ADG or ADFI above the medium CP. Pigs offered 215 g lactose/kg had a higher dry matter (P<0.001), organic matter (P<0.001), energy (P<0.001), nitrogen (P<0.01) and neutral detergent fibre (P<0.05) coefficient of total tract apparent digestibility compared to pigs offered 125 g lactose/kg. There was an interaction between lactose and CP concentration for nitrogen intake (NI) (P<0.05), urine pH (P<0.05) and selected faecal microbial populations. At the high CP level, pigs offered diets containing 215 g lactose/kg had a higher NI and a lower urine pH than pigs offered 125 g lactose/kg (P<0.05). However, the inclusion of lactose had no significant effect on either NI or urine pH at the low or medium CP concentration. At the low lactose level there was a linear increase in faecal E. coli population and a linear decrease in faecal Lactobacilli population with increasing CP. However at high lactose levels CP concentration had no effect on either E. coli or Lactobacilli populations. Pigs offered 215 g lactose/kg had a significantly higher Bifidobacteria population compared to pigs offered 125 g lactose/kg. There was a linear decrease in Bifidobacteria population as CP increased. In conclusion, at the high lactose level there was a linear increase in ADG and ADFI with increasing CP concentrations. There was no increase in these parameters above 185 g CP/kg at the low lactose level.  相似文献   

20.
《Process Biochemistry》2007,42(3):454-458
As a powerful statistical experimental design, uniform design (UD) method has been successfully applied in various fields such as fermentation industry, pharmaceuticals, and others. In this paper, UD was applied to optimize the medium composition for glutathione production in shake-flask culture of Saccharomyces cerevisiae T65. The experiments of nine factors (glucose, yeast extract, peptone, malt extract, molasses, MgSO4, ZnSO4, (NH4)2HPO4 and thiamine) and nine levels were carried out according to the uniform design table U27(99). The experimental data was analyzed to obtain the regression model and the optimal medium composition was achieved by optimization with UD 3.0 software. The optimal medium consisted of 70 g/L glucose, 3 g/L yeast extract, 5 g/L peptone, 70 g/L malt extract, 20 g/L molasses, 5.6 g/L MgSO4, 16 mg/L ZnSO4, 7 g/L (NH4)2HPO4 and 0.2 mg/L thiamine. The GSH yield at the optimal point achieved 74.6 mg/L, which was 1.81 times higher than that of the control. The application of UD method resulted in enhancement in GSH production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号