首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.  相似文献   

2.
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.  相似文献   

3.
王翠翠  袁慧军 《遗传》2017,39(3):208-219
耳聋是一种常见的严重出生缺陷,阐明遗传性耳聋的致病机理不仅能够在临床上辅助诊断,为遗传咨询及耳聋预防提供依据,而且能促进人们更深入地了解耳聋的致病机制,开发新的治疗方法。随着基因组研究技术不断创新,以全基因组测序、全外显子组测序、目标区域测序为代表的高通量测序技术在遗传性耳聋研究中已得到广泛应用。本文总结了近5年全外显子组测序和目标区域测序在遗传性耳聋致病基因研究及临床分子诊断中应用及研究进展,希望能够有助于我国临床耳聋基因诊断技术的发展及诊断水平的提升。  相似文献   

4.
Retinitis pigmentosa (RP) is the most common and highly heterogeneous form of hereditary retinal degeneration. This study was to identify mutations in the 60 genes that were known to be associated with RP in 157 unrelated Chinese families with RP. Genomic DNA from probands was initially analyzed by whole exome sequencing. Sanger sequencing was used to confirm potential candidate variants affecting the encoded residues in the 60 genes, including heterozygous variants from genes that are related to autosomal dominant RP, homozygous or compound heterozygous variants from genes that are related to autosomal recessive RP, and hemizygous variants from genes that are related to X-linked RP. Synonymous and intronic variants were also examined to confirm whether they could affect splicing. A total of 244 candidate variants were detected by exome sequencing. Sanger sequencing confirmed 240 variants out of the 244 candidates. Informatics and segregation analyses suggested 110 potential pathogenic mutations in 28 out of the 60 genes involving 79 of the 157 (50 %) families, including 31 (39 %, 31/79) families with heterozygous mutations in autosomal dominant genes, 37 (47 %, 37/79) families with homozygous (9) or compound heterozygous (28) mutations in autosomal recessive genes, and 11 (14 %, 11/79) families with hemizygous mutations in X-linked genes. Of the 110 identified variants, 74 (67 %) were novel. The genetic defects in approximately half of the 157 studies families were detected by exome sequencing. A comprehensive analysis of the 60 known genes not only expanded the mutation spectrum and frequency of the 60 genes in Chinese patients with RP, but also provided an overview of the molecular etiology of RP in Chinese patients. The analysis of the known genes also supplied the foundation and clues for discovering novel causative RP genes.  相似文献   

5.

Background

Identification of the causative genes of retinitis pigmentosa (RP) is important for the clinical care of patients with RP. However, a comprehensive genetic study has not been performed in Korean RP patients. Moreover, the genetic heterogeneity found in sensorineural genetic disorders makes identification of pathogenic mutations challenging. Therefore, high throughput genetic testing using massively parallel sequencing is needed.

Results

Sixty-two Korean patients with nonsyndromic RP (46 patients from 18 families and 16 simplex cases) who consented to molecular genetic testing were recruited in this study and targeted exome sequencing was applied on 53 RP-related genes. Causal variants were characterised by selecting exonic and splicing variants, selecting variants with low allele frequency (below 1 %), and discarding the remaining variants with quality below 20. The variants were additionally confirmed by an inheritance pattern and cosegregation test of the families, and the rest of the variants were prioritised using in-silico prediction tools. Finally, causal variants were detected from 10 of 18 familial cases (55.5 %) and 7 of 16 simplex cases (43.7 %) in total. Novel variants were detected in 13 of 20 (65 %) candidate variants. Compound heterozygous variants were found in four of 7 simplex cases.

Conclusion

Panel-based targeted re-sequencing can be used as an effective molecular diagnostic tool for RP.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1723-x) contains supplementary material, which is available to authorized users.  相似文献   

6.
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.  相似文献   

7.
Autosomal dominant non-syndromic hearing loss (ADNSHL) is highly heterogeneous, among them, KCNQ4 is one of the most frequent disease-causing genes. More than twenty KCNQ4 mutations have been reported, but none of them were detected in Chinese mainland families. In this study, we identified a novel KCNQ4 mutation in a five generation Chinese family with 84 members and a known KCNQ4 mutation in a six generation Chinese family with 66 members. Mutation screening of 30 genes for ADNSHL was performed in the probands from thirty large Chinese families with ADNSHL by targeted region capture and high-throughput sequencing. The candidate variants and the co-segregation of the phenotype were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing in all ascertained family members. Then we identified a novel KCNQ4 mutation p.W275R in exon 5 and a known KCNQ4 mutation p.G285S in exon 6 in two large Chinese ADNSHL families segregating with post-lingual high frequency-involved and progressive sensorineural hearing loss. This is the first report of KCNQ4 mutation in Chinese mainland families. KCNQ4, a member of voltage-gated potassium channel family, is likely to be a common gene in Chinese patients with ADNSHL. The results also support that the combination of targeted enrichment and high-throughput sequencing is a valuable molecular diagnostic tool for autosomal dominant hereditary deafness.  相似文献   

8.
Alström syndrome (AS, OMIM ID 203800) is a rare childhood multiorgan disorder, which is widely studied in non-Arab ethnic patients. The clinical and molecular basis of AS and the mode of disease inheritance in consanguineous Arab populations is not well investigated. Therefore, to identify the molecular basis of AS in familial forms, the present study performed whole exome sequencing of 5 AS patients belonging to 2 different Bedouin families from Saudi Arabia. The present study identified the AS causative rare biallelic mutations in ALMS gene:T376S in exon 5 and S909* in exon 8 for family A and an R2721* in exon 10 (R2721*) for family B. ALMS1 targeted genetic sequencing of healthy population controls and family members has confirmed its extremely rare frequency and autosomal recessive mode of inheritance. The truncating mutations S909* and R2721* could cause the loss of CC domains and ALMS motif on C-terminal end of the protein and creates unstable protein, which eventually undergoes intracellular degradation. The premature protein truncating mutations described in our study may eventually provide further insight into the functional domains of the ALMS1 protein and contribute to the understanding of the phenotypic spectrum of AS. Whole exome sequencing based molecular diagnosis is expected to rule out ambiguity surrounding clinical diagnosis of suspected AS cases.  相似文献   

9.
Von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome characterized by predisposition for bilateral and multi-centric hemangioblastoma in the retina and central nervous system, pheochromocytoma, renal cell carcinoma, and cysts in the kidney, pancreas, and epididymis. We describe five families for which direct sequencing of the coding region of the VHL gene had failed to identify the family-specific mutation. Further molecular analysis revealed deletions involving the VHL gene in each of these families. In four families, partial deletions of one or more exons were detected by Southern blot analysis. In the fifth family, FISH analysis demonstrated the deletion of the entire VHL gene. Our results show that (quantitative) Southern blot analysis is a sensitive method for detecting germline deletions of the VHL gene and should be implemented in routine DNA diagnosis for VHL disease. Our data support the previously established observation that families with a germline deletion have a low risk for pheochromocytoma. Further unraveling of genotype-phenotype correlations in VHL disease has revealed that families with a full or partial deletion of the VHL gene exhibit a phenotype with a preponderance of central nervous system hemangioblastoma.  相似文献   

10.
Retinitis pigmentosa (RP) is the most frequent genetically and clinically heterogeneous inherited retinal degeneration. To date, more than 80 genes have been identified that cause autosomal dominant, autosomal recessive and X linked RP. However, locus and allelic heterogeneity of RP has not been fully captured yet. This heterogeneity and lack of an accurate genotype phenotype correlation makes molecular dissection of the disease more difficult. The present study was designed to characterize the underlying pathogenic variants of RP in Pakistan. For this purpose, a large consanguineous family with RP phenotype showing autosomal recessive mode of inheritance was selected after a complete ophthalmological examination. Next generation sequencing was used for the identification of molecular determinant followed by Sanger-sequencing for confirmation. After sequence analysis a novel homozygous missense mutation, (c.602 C?>?T) in exon 4 of the RDH5 gene (MIM: 601617) was identified. This mutation resulted in substitution of phenyl alanine for serine at amino acid 201 (p.Ser201Phe) of the RDH5 gene. The same mutation was not detected in the 200 ethnically-matched control samples by Sanger sequencing. The identified mutant allele segregated in homozygous fashion in all the affected individuals of pedigree. Identification of this mutation reveals the allelic heterogeneity of RDH5 in patients with RP phenotype. The findings of this study demonstrate the clinical significance of next generation sequencing to understand the molecular basis of diseases and would help to reveal new proteins and their function in visual cycle will pave the way for early diagnosis, genetic counseling and better therapeutic inventions.  相似文献   

11.
Increasingly, mutations in genes causing Mendelian disease will be supported by individual and small families only; however, exome sequencing studies have thus far focused on syndromic phenotypes characterized by low locus heterogeneity. In contrast, retinitis pigmentosa (RP) is caused by >50 known genes, which still explain only half of the clinical cases. In a single, one-generation, nonsyndromic RP family, we have identified a gene, dehydrodolichol diphosphate synthase (DHDDS), demonstrating the power of combining whole-exome sequencing with rapid in vivo studies. DHDDS is a highly conserved essential enzyme for dolichol synthesis, permitting global N-linked glycosylation. Zebrafish studies showed virtually identical photoreceptor defects as observed with N-linked glycosylation-interfering mutations in the light-sensing protein rhodopsin. The identified Lys42Glu variant likely arose from an ancestral founder, because eight of the nine identified alleles in 27,174 control chromosomes were of confirmed Ashkenazi Jewish ethnicity. These findings demonstrate the power of exome sequencing linked to functional studies when faced with challenging study designs and, importantly, link RP to the pathways of N-linked glycosylation, which promise new avenues for therapeutic interventions.  相似文献   

12.
This study aimed to identify the underlying molecular genetic cause in four Spanish families clinically diagnosed of Retinitis Pigmentosa (RP), comprising one autosomal dominant RP (adRP), two autosomal recessive RP (arRP) and one with two possible modes of inheritance: arRP or X-Linked RP (XLRP). We performed whole exome sequencing (WES) using NimbleGen SeqCap EZ Exome V3 sample preparation kit and SOLID 5500xl platform. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation and the absence in local control population. This strategy allowed the detection of: (i) one novel heterozygous splice-site deletion in RHO, c.937-2_944del, (ii) one rare homozygous mutation in C2orf71, c.1795T>C; p.Cys599Arg, not previously associated with the disease, (iii) two heterozygous null mutations in ABCA4, c.2041C>T; p.R681* and c.6088C>T; p.R2030*, and (iv) one mutation, c.2405-2406delAG; p.Glu802Glyfs*31 in the ORF15 of RPGR. The molecular findings for RHO and C2orf71 confirmed the initial diagnosis of adRP and arRP, respectively, while patients with the two ABCA4 mutations, both previously associated with Stargardt disease, presented symptoms of RP with early macular involvement. Finally, the X-Linked inheritance was confirmed for the family with the RPGR mutation. This latter finding allowed the inclusion of carrier sisters in our preimplantational genetic diagnosis program.  相似文献   

13.
Early retinal degeneration (erd) is an early onset progressive retinal atrophy, a hereditary canine retinal disease phenotypically similar to human retinitis pigmentosa (RP). In previous efforts to identify the erd locus, canine homologs of genes causally associated with RP in humans, such as opsin (RHO), the beta-subunit gene for cyclic GMP phosphodiesterase (PDE6B), and RDS/peripherin, were excluded. A genome-wide screen was undertaken on canine families segregating the erd disease. Analysis of over 150 canine-specific markers has localized erd to a single linkage group comprising two previously identified canine linkage groups, 20 and 26, corresponding to canine radiation hybrid groups RH.34-a and RH.40-a. Multipoint analysis places erd in the interval between marker FH2289 (distance 23.6 cM) and FH2407 (5.9 cM) with a lod score of 12.23. Although the erd linkage group has not been assigned to an identified canine chromosome, conserved synteny of this linkage group with human 12p13-q13 suggests several candidates for erd and identifies a novel retinal degeneration locus. The rapid progress now occurring in canine genetics will expedite identification of the genes and molecular mechanisms underlying the inherited traits and diseases that make the dog a unique asset for study of mammalian traits.  相似文献   

14.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease and an important cause of blindness in the state of Andhra Pradesh in India. In an attempt to identify the disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP. Microsatellite markers closely flanking 21 known candidate genes for RP were genotyped in parents and affected offspring to determine whether there was homozygosity at these loci that was shared by affected individuals of a family. This screening approach may be a rapid preliminary method to test known loci for possible cosegregation with disease.  相似文献   

15.

Background

Aortopathies are a group of disorders characterized by aneurysms, dilation, and tortuosity of the aorta. Because of the phenotypic overlap and genetic heterogeneity of diseases featuring aortopathy, molecular testing is often required for timely and correct diagnosis of affected individuals. In this setting next generation sequencing (NGS) offers several advantages over traditional molecular techniques.

Methods

The purpose of our study was to compare NGS enrichment methods for a clinical assay targeting the nine genes known to be associated with aortopathy. RainDance emulsion PCR and SureSelect RNA-bait hybridization capture enrichment methods were directly compared by enriching DNA from eight samples. Enriched samples were barcoded, pooled, and sequenced on the Illumina HiSeq2000 platform. Depth of coverage, consistency of coverage across samples, and the overlap of variants identified were assessed. This data was also compared to whole-exome sequencing data from ten individuals.

Results

Read depth was greater and less variable among samples that had been enriched using the RNA-bait hybridization capture enrichment method. In addition, samples enriched by hybridization capture had fewer exons with mean coverage less than 10, reducing the need for followup Sanger sequencing. Variants sets produced were 77% concordant, with both techniques yielding similar numbers of discordant variants.

Conclusions

When comparing the design flexibility, performance, and cost of the targeted enrichment methods to whole-exome sequencing, the RNA-bait hybridization capture enrichment gene panel offers the better solution for interrogating the aortopathy genes in a clinical laboratory setting.  相似文献   

16.
Exome sequencing in families affected by rare genetic disorders has the potential to rapidly identify new disease genes (genes in which mutations cause disease), but the identification of a single causal mutation among thousands of variants remains a significant challenge. We developed a scoring algorithm to prioritize potential causal variants within a family according to segregation with the phenotype, population frequency, predicted effect, and gene expression in the tissue(s) of interest. To narrow the search space in families with multiple affected individuals, we also developed two complementary approaches to exome-based mapping of autosomal-dominant disorders. One approach identifies segments of maximum identity by descent among affected individuals; the other nominates regions on the basis of shared rare variants and the absence of homozygous differences between affected individuals. We showcase our methods by using exome sequence data from families affected by autosomal-dominant retinitis pigmentosa (adRP), a rare disorder characterized by night blindness and progressive vision loss. We performed exome capture and sequencing on 91 samples representing 24 families affected by probable adRP but lacking common disease-causing mutations. Eight of 24 families (33%) were revealed to harbor high-scoring, most likely pathogenic (by clinical assessment) mutations affecting known RP genes. Analysis of the remaining 17 families identified candidate variants in a number of interesting genes, some of which have withstood further segregation testing in extended pedigrees. To empower the search for Mendelian-disease genes in family-based sequencing studies, we implemented them in a cross-platform-compatible software package, MendelScan, which is freely available to the research community.  相似文献   

17.
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.  相似文献   

18.
ABSTRACT: BACKGROUND: Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. METHODS: Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. RESULTS: Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. CONCLUSION: Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.  相似文献   

19.
Xie S  Lan Z  Qu N  Wei X  Yu P  Zhu Q  Yang G  Wang J  Shi Q  Wang W  Yang L  Yi X 《Gene》2012,499(1):139-142
Dystrophin (DMD) gene is the largest gene containing 79 exons involving various mutation types and regions, and targeted next-generation sequencing (NGS) was employed in detecting DMD gene mutation in the present study. A literature-annotated disease nonsense mutation (c.10141C>T, NM_004006.1) in exon 70 that has been reported as Duchenne Muscular Dystrophy (DMD)-causing mutation was found in our two patients, the proband and his cousin. In the present study two main methods were used, the next-generation sequencing and the classic Sanger sequencing. The exon capture followed by HiSeq2000 sequencing was specifically used in this study. Combined applications of the next-generation sequencing platform and bioinformatics are proved to be effective methods for DMD diagnosis.  相似文献   

20.
Next-generation sequencing and phylogenomics hold great promise for elucidating complex relationships among large plant families. Here, we performed targeted capture of low copy sequences followed by next-generation sequencing on the Illumina platform in the large and diverse angiosperm family Compositae (Asteraceae). The family is monophyletic, based on morphology and molecular data, yet many areas of the phylogeny have unresolved polytomies and interpreting phylogenetic patterns has been historically difficult. In order to outline a method and provide a framework and for future phylogenetic studies in the Compositae, we sequenced 23 taxa from across the family in which the relationships were well established as well as a member of the sister family Calyceraceae. We generated nuclear data from 795 loci and assembled chloroplast genomes from off-target capture reads enabling the comparison of nuclear and chloroplast genomes for phylogenetic analyses. We also analyzed multi-copy nuclear genes in our data set using a clustering method during orthology detection, and we applied a network approach to these clusters—analyzing all related locus copies. Using these data, we produced hypotheses of phylogenetic relationships employing both a conservative (restricted to only loci with one copy per targeted locus) and a multigene approach (including all copies per targeted locus). The methods and bioinformatics workflow presented here provide a solid foundation for future work aimed at understanding gene family evolution in the Compositae as well as providing a model for phylogenomic analyses in other plant mega-families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号