首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

2.
Abstract

Pseudomonas sp. lipase (PSL) immobilization was performed using three different protocols. Lipase immobilized on Diaion HP20 (HP20-PSL) exhibited the highest catalytic activity and stability in the kinetic resolution of racemic 2-octanol. The reaction rate of HP20-PSL was approximately 20 times higher than that of free PSL and the residual activities of HP20-PSL and free PSL were respectively 84% and 19% after incubation in the reaction medium for 72 h. A study of the effect of different reaction parameters on HP20-PSL-catalyzed resolution of (R,S)-2octanol showed that the optimal water content of the immobilized matrix and the optimal molar ratio of vinyl acetate to 2-octanol were 60 ± 5% and 2.5:1, respectively. Under the optimized reaction conditions, (S)-2-octanol of high optically purity (enantiomeric excess > 99%) could be recovered at 53% conversion rate, and HP20-PSL could be reused for ten cycles without significant decrease in its activity and enantioselectivity.  相似文献   

3.
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m2/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3–4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60 °C for 8 h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity.  相似文献   

4.
The thermophilic lipase QLM-catalyzed resolution of (R, S)-2-octanol and (R, S)-2-pentanol via transesterification was carried out in various organic solvents, and the solvent effects on the enzyme's enantioselectivity were investigated. A significant negative correlation between the enantiomeric ratio, E, and the size of the solvent molecules was observed. The highest E value, 21, was obtained in the small molecular-sized solvent dichloromethane when (R, S)-2-octanol was resolved with vinyl acetate as acyl donor. Thermodynamic analysis indicated that the difference in activation free energy between the two enantiomers was about 25.5% lower in dichloromethane than in the solvent-free system, and the change in the difference in activation entropy between the enantiomers was the main contributor to the changes in E values with the molecular size of solvents.  相似文献   

5.
Combination use of microwave irradiation (MW) as heating mode and ionic liquid (IL) as reaction medium in enzymatic resolution of (R,S)-2-octanol with vinyl acetate as the acyl donor through transesterification by Novozym 435 was investigated. A synergistic effect of MW and IL [EMIM][NTf2], which was screened as the best reaction medium for this reaction, on improving enzyme activity and enantioselectivity was observed. The activity and enantioselectivity of Novozym 435 in [EMIM][NTf2] under MW were much higher than that in solvent free system under conventional heating, in solvent free system under MW, and in [EMIM][NTf2] under conventional heating, respectively. A systematic screening and optimization of the reaction parameters in [EMIM][NTf2] under MW were performed. Under the optimum conditions, 50% yield of (S)-2-octanol with 99% enantiomeric excess was obtained in 6 h. Furthermore, increased thermal stability and reusability of Novozym 435 under the combination use of MW and IL condition were also observed.  相似文献   

6.
A straightforward approach to enantiomerically enriched (R) and (S)-3-hydroxycyclopentanone is described. The key step involves a kinetic resolution of racemic 3-hydroxycyclopentanone using commercial Pseudomonas cepacia lipase immobilized on diatomite (Amano lipase PS-DI). The absolute stereochemistry of the product was determined by derivatization into (R)-3-(benzyloxy)cyclopentanone.  相似文献   

7.
With succinic anhydride as acylating agent, three commercial lipases – Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase and Pseudomonas fluorescens lipase – were employed in the kinetic resolution of a series of rac-alkyl alcohols: 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, 2-octanol, 3-hexanol, 3-methyl-2-butanol, 6-methyl-5-heptene-2-ol, 3-methyl-2-cyclohexene-1-ol and 2-methyl-1-pentanol. The most effective tested enzyme, immobilized CALB, was able to resolve most of the alcohols with high enantioselectivity, even higher (with enantiomeric ratios up to 115 and 91, for 3-hexanol and 3-methyl-2-butanol, respectively) than when vinyl acetate was used as the acylating agent. More importantly, the unreacted alcohol and the monoester succinate produced could be easily separated by a simple aqueous base-organic solvent liquid–liquid extraction. Using succinic anhydride as acylating agent and CALB, enantiomerically pure (S)-2-pentanol with 99% ee and (R)-2-pentanol with 95% ee were prepared in gram-scale reactions.  相似文献   

8.
Burkholderia cepacia lipase was immobilized in silicates forming from n-butyl-substituted precursors within a silica monolith from methyl-substituted precursors. The resultant preparation gave about 12 times higher rates of transesterification of (R, S)-1-phenylethanol with vinyl acetate and an approximately two-fold increase in the enantioselectivity toward (R)-1-phenylethanol, as compared to a non-immobilized counterpart. The highest enzymatic activity and enantioselectivity (reaching 250) were found at a low water activity of 0.11. The continuous-flow kinetic resolution of (R, S)-1-phenylethanol was successfully conducted using lipase-immobilized silica monolith micro-bioreactors with various inside diameters ranging from 0.25 to 1.6 mm. The reactor performance during continuous operation was consistent with the prediction from the batch reactor. A steady state conversion of 40% and enantiomeric excess more than 98% were maintained over a time period of 15 days.  相似文献   

9.
A new lipase which enantioselectively hydrolyzes (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM], a key intermediate in the synthesis of diltiazem hydrochloride, was purified from the culture supernatant of Serratia marcescens Sr41 8000. The apparent kinetic constants (Km, Vmax) for hydrolysis of (2S,3R)-MPGM [(+)-MPGM] were 350 mM and 1.7 × 10−3 mol/min/mg protein in a toluene-water (1:1) emulsion system. The lipase did not attack (2R,3S)-MPGM [(−)-MPGM], and (−)-MPGM acted as a competitive inhibitor. The molecular mass was estimated to be 62,000 ± 2,000 from SDS-PAGE. The lipase preferentially hydrolyzed (2S,3R)-3-phenylglycidic acid esters, but did not hydrolyze cinnamic acid esters. The lipase released glycerol and fatty acid from olive oil, and the optimum pH and temperature for hydrolysis of olive oil were pH 8 and 45°C, respectively. The lipase was inhibited by Co2+, Ni2+, Fe2+, Fe3+ and EDTA, and activated by Ca2+, Li+ and SDS. It was presumed that the lipase was a metalloenzyme containing approximately one gram atom of calcium per molecular mass of 62,000. The lipase selectively hydrolyzed the 1,3 ester of triglycerides. Sequencing of the N-terminal amino acids revealed that this lipase was distinct from other known lipases.  相似文献   

10.
《Process Biochemistry》2007,42(9):1319-1325
A two-step enzymatic resolution process for production of (R)- and (S)-glycidyl butyrate was investigated and the lipases were screened. The first step involved a hydrolysis of (R,S)-glycidyl butyrate catalyzed by porcine pancreatic lipase (S-favored) with an E of 21 for production of (R)-glycidyl butyrate (13.2 mmol, 98% ee, 36% yield) under the optimal conditions (pH 7.4, 30 °C, 30 mg/ml CTAB). Then, the recovered (R)-enriched glycidol (19.8 mmol, 65% ee, 56% yield) was used for transesterification catalyzed by Novozym 435 (R-favored) with an E of 69 to obtain (S)-glycidyl butyrate (15.1 mmol, 98% ee, 42% yield) under the optimum conditions (aW = 0.24, n-heptane, 80 min).  相似文献   

11.
In the Candida antarctica lipase B-catalyzed hydrolysis of (R,S)-azolides derived from (R,S)-N-protected proline in water-saturated methyl tert-butyl ether (MTBE), high enzyme activity with excellent enantioselectivity (V S V R ?1 ?>?100) for (R,S)-N-Cbz-proline 1,2,4-triazolide (1) and (R,S)-N-Cbz-proline 4-bromopyrazolide (2) was exploited in comparison with their corresponding methyl ester analog (3). Changing of the substrate structure, water content, solvent, and temperature was found to have profound influences on the lipase performance. On the basis of enzyme activity and enantioselectivity and solvent boiling point, the best reaction condition of using 1 as the substrate in water-saturated MTBE at 45 °C was selected and further employed for the successful resolution of (R,S)-N-Cbz-pipecolic 1,2,4-triazolide (5) and (R,S)-N-Boc-nipecotic 1,2,4-triazolide (9). Moreover, more than 89.1 % recovery of remained (R)-1 is obtainable in five cycles of enzyme reusage, when pH 7 phosphate buffers were employed as the extract at 4 °C.  相似文献   

12.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

13.
Pseudomonas sp. lipase was immobilized onto glutaraldehyde-activated Florisil® support via Schiff base formation and stabilized by reducing Schiff base with sodium cyanoborohydride. The immobilization performance was evaluated in terms of bound protein per gram of support (%) and recovered activity (%). A 4-factor and 3-level Box–Behnken design was applied for the acylation of (±)-2-(propylamino)-1-phenylethanol, a model substrate, with vinyl acetate and the asymmetric acylations of other (±)-2-amino-1-phenylethanols with different alkyl substituents onto nitrogen atom such as (±)-2-(methylamino)-1-phenylethanol, (±)-2-(ethylamino)-1-phenylethanol, (±)-2-(butylamino)-1-phenylethanol and (±)-2-(hexylamino)-1-phenylethanol were performed under the optimized conditions. The optimal conditions were bulk water content of 1.8%, reaction temperature of 51.5 °C, initial molar ratio of vinyl acetate to amino alcohol of 1.92, and immobilized lipase loading of 47 mg mL?1. (R)-enantiomers of tested amino alcohols were preferentially acylated and the reaction purely took place on the hydroxyl group of 2-amino-1-phenylethanols. The increase of alkyl chain length substituted onto nitrogen atom caused an increase in the acylation yield and ee values of (S)-enantiomers. Enantiomeric ratio values were >200 for all the reactions. Our results demonstrate that the immobilized lipase is a promising biocatalyst for the preparation of (S)-2-amino-1-phenylethanols and their corresponding (R)-esters via O-selective acylation of (±)-2-amino-1-phenylethanols with vinyl acetate.  相似文献   

14.
Candida rugosa lipase (CRL) shows high enantioselectivity toward (1R,2S)-(−)-trans-2-phenyl-1-cyclohexanol enantiomer in acetylation reaction employing vinyl acetate as acyl donor. Attempts to improve reaction yields have pointed out that supercritical CO2 is the best reaction medium in the studied biocatalytic process. In these conditions an immobilised lipase from Candida rugosa is able to quantitatively resolve racemate with e.e.p 100%.  相似文献   

15.
The lipase-catalyzed optical resolution of 2-, 3-, and 5-hydroxyalkyl phosphorus compounds 1 provided the corresponding optically pure diastereomers in good yields. (SP, R)- and (RP, S)-1 were acylated faster than (SP, S)- and (RP, R)-1. The stereoselectivity at the phosphorus atom changed with the flexibility of the active sites in the lipases. The stereoselectivity at the phosphorus atom was higher in the reaction of 1a than in the reaction of 1b,c. The reaction rate of ɛ-hydroxyalkylphosphine oxide 1c was faster than that of 1a, although less enantioselectivity was observed at the phosphorus atom.  相似文献   

16.
Four halogenated cyclopropane derivatives with a side chain containing a primary (1 and 2) or secondary (3 and 4) alcohol moiety were subject to kinetic resolution catalyzed by lipases. Two of them containing secondary alcohol groups gave excellent results with Candida antarctica lipase B with E-values around 1000. Two enantiopure alcohols and two enantiopure butanoates are described: (1S,1S)-1-(2′,2′-dichloro-3′,3′-dimethylcyclopropyl) ethanol (3), the corresponding (1R,1R)-butanoate (3b) and (1S,1S)-1-(1′-methyl-2′,2′-dibromocyclopropyl) ethanol (4) and the corresponding (1R,1R)-butanoate (4b).  相似文献   

17.
Summary We have demonstrated resolution of 2-methylalkanoic acids using lipase from Candida cylindracea as a catalyst. The resolution of 2-methyldecanoic acid was more successful than that of 2-methylbutyric acid both by esterification and hydrolysis. This indicates that the resolution of the acid is dependent on the chain length of the acid moiety. The chain length of the alcohol moiety of the ester affected the resolution of the long-chain acid only. Using esterification, (R)-2-methyldecanoic acid was produced in an enantiomeric excess (e.e.) of 95% (E = 40). If the enantiomeric ratio is low (E = 3.6), as in the resolution of 2-methylbutyric acid, esterification combined with a high equilibrium conversion could be used to yield the remaining acid in a high e.e. In the hydrolytic reactions, the e.e and the equilibrium conversion were dependent on the pH and the presence of CaCl2. When octyl 2-methyldecanoate was hydrolysed at pH 8.0 in the presence of CaCl2, the (S)-acid was formed with an e.e. of 80% (E = 9), but when the hydrolysis was carried out at pH 7.5 without CaCl2, a very low e.e. and a low equilibrium conversion were observed. The latter conditions allowed the esterification of 2-methyldecanoic acid with 1-octanol even in aqueous medium. Offprint requests to: K. Hult  相似文献   

18.
Optically pure (R)-β-butyrolactone as an important chiral building block in the syntheses of various biologically active compounds and biodegradable polymers was prepared from (R,S)-β-butyrolactone through kinetic resolution. Candida antarctica lipase B (CALB) with a high enantiomeric ratio of 198 enantioselectively catalyzed the ring opening of the racemate with methanol in methyl tert-butyl ether at 45 °C and yielded the remaining (R)-β-butyrolactone. A detailed kinetic analysis indicated that methanol and (R)- and (S)-methyl ester all acted as competitive inhibitors for the enzyme. Comparisons of the theoretical and experimental conversions for both enantiomers were further made and elucidated. The thermodynamic analysis implied the enantiomer discrimination for the transition states of both enantiomers to be entropy-driven in the temperature range investigated. Moreover, preliminary results from the lipase reusability, feed-batch operation, and remaining substrate recovery were addressed.  相似文献   

19.
We report the deacylation of (20R)-20-acetyl-23,24-dinorcholanic lactones by hydrazine hydrate, under microwave irradiation in high yields. The elimination of the 20-acetyl group proceeded with retention of configuration which contrast with other proved deacylation methods that yield a mixture of diastereoisomers. In this way, unnatural (20R)-23,24-dinorcholanic lactones can be produced rapidly on a large scale. Both (20R)- and (20S)-lactones were prepared starting from diosgenin, hecogenin and sarsasapogenin, in 72-80% overall yields.  相似文献   

20.
This study was investigated for the enantioselective separation of (S)-ibuprofen using the ionic liquid in the microfluidic device. A stable and thin ionic liquid flow (ILF) was made by controlling the flow rate of the ILF in the microfluidic channel. In addition, coupling lipase as a biocatalyst with the ILF based on the microfluidic device showed the facilitative and selective transport of (S)-ibuprofen across the ILF, indicating successful optical resolution of a racemic mixture. Subsequently, the enantioselectivity was evaluated in the transport ratio (η) of (R)- and (S)-ibuprofen, the optical resolution ratio (α) and enantiomeric excess of (S)-ibuprofen (eeS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号