首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

2.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

3.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

4.
A new method for covering magnetic particles with a stable non-porous layer of a material like zeolite or activated carbon was used for the preparation of support materials with good properties for the immobilization of yeast Saccharomyces cerevisiae cells. The immobilized cells can be used in batch and continuous alcoholic fermentation. A productivity of 35.6 g ethanol/l · h was reached. The adsorption isotherms of the immobilized yeast cells were determined. Yeast cell immobilization on non-porous magnetic supports obeyed the Langmuir isotherm equation. Satisfactory results were obtained also from repeated batch fermentations with fixed cells on supports additionally treated with glutaraldehyde or by simple adsorption.  相似文献   

5.
A biocatalyst prepared by the immobilization of a cryotolerant strain of Saccharomyces cerevisiae on gluten pellets was used for batch and continuous fermentation at low temperatures. The immobilized yeast showed important operational stability in repeated batch fermentations without a decrease of activity even at 0 and 5°C. Repeated batch fermentations using the biocatalyst resulted in improvement of ethanol productivity in comparison with bottom brewing fermentation and free cells using the same yeast strain. At 0 and 10°C, the fermentation rate was four and seven times higher than that of free cells, respectively. For immobilized yeast, diacetyl and polyphenol contents were lower and the alcohol concentration higher at low temperatures (0–7°C) when compared to free cells. Fine clarity was also observed in the beers. Continuous brewing using gluten-supported biocatalyst had an operational stability of 3 months with relatively high productivity and without contamination. Polyphenol and bitterness contents were lower in the continuous process than those of batch fermentations, but at low temperature (5°C) they were higher. The diacetyl content was higher than in batch fermentations and beers had a fine aroma and taste.  相似文献   

6.
The immobilization of whole cells for fermentation processes has many potential advantages over fermentation with free cells, including higher cell concentrations, higher productivites and a higher level of operational stability. Most of the research reported in the literature has been directed towards demonstrating the feasibility of using these systems for various fermentations. The ultimate goal of research in this area is to bring the understanding of immobilized whole cells to the level of heterogeneous catalysis. Immobilized whole cell systems are examined from a mass transfer perspective. Evidence for external and internal mass transfer limitations is presented. Procedures for quantifying these effects in terms of effectiveness factors and determining the reaction kinetics in their presence are reviewed. Development of the reactor design equations and the reactor performance results for fermentations with immobilized cells are also discussed.  相似文献   

7.
Different factors which affect the stability of calcium alginate gel beads entrapping viable cells during fermentation were investigated. It was found that among others, the initial population of cells per ml of gel beads, the length of period of incubation in CaCl2 solution, and the concentration of sodium alginate used for the immobilization were the most important factors affecting the stability of the gel beads during fermentation. By using an initial cell population of about 105 cells per ml of 2.0% sodium alginate, and incubating the beads for at least 22 h in a CaCl2 solution after immobilization, the percentage of beads which developed cracks during fermentation was highly reduced. Also, without the addition of CaCl2 into the fermenting broth, the gel beads were stable for nine consecutive batch fermentations.  相似文献   

8.
Aims: The feasibility of the continuous production of a valuable bioplastic raw material, namely 1,3‐propanediol (1,3‐PDO) from biodiesel by‐product glycerol, using immobilized cells was investigated. In addition, the effect of hydraulic retention time (HRT) was also analysed. Methods and Results: Ceramic balls and ceramic rings were used for the immobilization of a locally isolated strain; Klebsiella pneumoniae (GenBank no. 27F HM063413 ). HRT of 1 h is the best one in terms of volumetric production rate (g 1,3‐PDO l?1 h?1). The results indicated that ceramic‐based cell immobilization achieved a 2‐fold higher production rate (10 g 1,3‐PDO l?1 h?1) in comparison with suspended cell system (4·9 g 1,3‐PDO l?1 h?1). Conclusions: Continuous cultures with immobilized cells revealed that 1,3‐PDO production was more effective and more stable than suspended culture systems. Furthermore, cell immobilization had also obvious benefits especially for resistance of the production for extreme conditions (high organic loading rates, cell washouts). The results were important for understanding the significance of continuous immobilization process among other well‐known 1,3‐PDO fermentation processes. Significance and Impact of the Study: This work is a promising process for further studies, as the immobilized micro‐organism was able to reach high volumetric production rates at short HRT, it has an important role in tolerating and converting glycerol during fermentation. Therefore, HRT is a very significant operational parameter (P value <0·05) directly affecting the bioreactor performance and production rate.  相似文献   

9.
The distinction between immobilized cell fermentation and immobilized cell biocatalysis is seldom made, though they are conceptually quite different. Unlike immobilized enzyme systems, immobilized viable cells can be used to carry out conventional fermentations. Microbial cells which would otherwise be freely dispersed (in almost colloidal suspension) within the fermentation environment can be encouraged to become attached in some way to a support (carrier), thus producing a discrete particulate solid phase. Such immobilization offers several potential advantages of a process engineering nature to the fermentation system. These include ease of handling and of cell separation, and lowering of bulk viscosity, as well as the obvious potential benefits of increased cell concentration.  相似文献   

10.
Several microorganisms having higher L -histidine ammonia-lyase activity were immobilized into polyacrylamide gel lattice. The yield of enzyme activity by immobilization was highest in Achromobacter liquidum IAM 1667. As A. liquidum has urocanase activity, the cells were heat-treated at 70°C for 30 min to inactivate the urocanase. Enzymatic properties of the immobilized A. liquidum cells were investigated and compared with those of the intact cells. No difference was observed between the pH activity curve and optimal temperature for the intact and immobilized cells. The permeability of substrate or product through the cell wall was increased by immobilization of the cells. When an aqueous solution of 0.25M L -histidine (pH 9.0) containing 1mM Mg2+ was passed through a column packed with the immobilized A. liquidum cells at a flow rate of SV = 0.06 at 37°C, L -histidine was completely converted to urocanic acid. The L -histidine ammonia-lyase activity of the immobilized cell column was stable over 40 days at 37°C. From the effluent of the immobilized cell column, Urocanic acid was easily obtained in a good yield.  相似文献   

11.
Summary Calcium alginate beads containingLactococcus lactis cells were used for three batch fermentations of milk or a commercially available growth medium (Gold Complete, Nordica) with the aim of producing concentrated cultures. Repeated fermentations did not significantly increase bead CFU counts which were between 3.3–7.8×1010 CFU/g. During the second and third fermentations, which lasted 6 h each, the bead populations decreased if the incubation was extended over 2 h. There was cell release from the beads. Fermentation media and fermentation time all had an effect on free cell counts, but none of these factors statistically interacted. Free cell counts were higher at the end of fermentations 2 and 3 than in the first fermentation and approximately 50% of the population was in the free state. Free cell counts were higher when the beads were incubated in Gold complete than in milk. Although the total bacterial population of a standard free cell fermentation was always higher than those having immobilized cells, immobilized cell technology did enable the production of dense cultures.  相似文献   

12.
Abstract

In spite of its traditional nature, wine making is largely concerned with the progress of biotechnology. High cell density reactors have potential for enology: improved performance of alcoholic and malolactic fermentations, smaller scale fermentation facilities, adaptation to continuous processes. Among the immobilization techniques, cell entrapment in alginate beads seems to be an impressive one. Alcoholic fermentation of wine, malolactic fermentation, bottle fermentation known as “Methode champenoise” and sparkling wine are among the industrial applications. Knowledge of kinetics and physiology in microorganisms in heterogeneous media has expanded in the last few years. The use of immobilized yeast cells for the champagne method would greatly simplify “remuage”. The compared metabolism of entrapped and free cells during the bottle fermentation shows differences, but the final product does not reveal significant sensory disparity. New products can be obtained with more thoroughly controlled conditions.  相似文献   

13.
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol–sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml?1 (36 h), 47.50 U ml?1 (36 h) and 68.36 U ml?1 (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml?1 (18 h) on cassava, 79.17 U ml?1 (12 h) on potato and 55.37 U ml?1 (in 6 h and max 77.75 U ml?1 in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells.  相似文献   

14.
The aim of our research was to study how the conditions of immobilization influence cell attachment to two different ceramic surfaces: hydroxylapatite and chamotte tablets. Three fermentative yeast strains, namely brewery TT, B4 (ale, lager) and distillery Bc15a strains belonging to Saccharomyces spp., and one strain of Debaryomyces occidentalis Y500/5 of weak fermentative nature, but with high amylolytic activity due to extracellular ??-amylase and glucoamylase, were used in this study. Different media, including cell starvation, were applied for immobilization of yeast strains as well as different phases of cell growth. Immobilization of selected yeasts on a hydroxylapatite carrier was rather weak. However, when incubation of starved yeast cells was conducted in the minimal medium supplemented by calcium carbonate, the scale of immobilization after 24?h was higher, especially for the D. occidentalis strain. Adhesion to hydroxylapatite carriers in wort broth was of reversible character and better results of adhesion were observed in the case of another ceramic carrier-chamotte. The number of immobilized cells was about 106?C107 per tablet and cell adhesion was stable during the whole fermentation process. The comparison of the volatile products that were formed during fermentation did not show any significant qualitative and quantitative differences between the free and the immobilized cells. This is the first time when a cheap, porous chamotte surface has been applied to yeast adhesion and fermentation processes.  相似文献   

15.
Horseradish peroxidase (HRP) is a highly specific enzyme with great potential for use in the decolorization of synthetic dyes. A comprehensive study of HRP immobilization using various techniques such as adsorption and covalent immobilization on the novel carrier Purolite® A109 with a special focus on enzymatic decolorization and toxicity of artificially colored wastewater. The immobilized preparations with an activity of 156.21 ± 1.41 U g−1 and 85.71 ± 1.62 U g−1 after the HRP adsorption and covalent immobilization, respectively, were obtained. Stability and reusability of the immobilized preparations were also evaluated. A noteworthy decolorization level (~90%) with immobilized HRP was achieved. Phytotoxicity testing using Mung bean seeds and acute toxicity assay with Artemia salina has confirmed the applicability of the obtained immobilized preparation in industrial wastewater plants for the treatment of colored wastewater.  相似文献   

16.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l?1), yeast extract (25.93 g l?1), and corn steep liquor (10.45 g l?1) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW?1) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet?1 h?1. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.  相似文献   

17.
The intracellular lipase production by Mucor circinelloides URM 4182 was investigated through a step-by-step strategy to attain immobilized whole-cells with high lipase activity. Physicochemical parameters, such as carbon and nitrogen sources, inoculum size and aeration, were studied to determine the optimum conditions for both lipase production and immobilization in polyurethane support. Olive oil and soybean peptone were found to be the best carbon and nitrogen sources, respectively, to enhance the intracellular lipase activity. Low inoculum level and poor aeration rate also provided suitable conditions to attain high lipase activity (64.8 ± 0.8 U g?1). The transesterification activity of the immobilized whole- cells was assayed and optimal reaction conditions for the ethanolysis of babassu oil were determined by experimental design. Statistical analysis showed that M. circinelloides whole-cells were able to produce ethyl esters at all tested conditions, with the highest yield attained (98.1 %) at 35 °C using an 1:6 oil-to-ethanol molar ratio. The biocatalyst operational stability was also assayed in a continuous packed bed reactor (PBR) charged with glutaraldehyde (GA) and Aliquat-treated cells revealing half-life of 43.0 ± 0.5 and 20.0 ± 0.8 days, respectively. These results indicate the potential of immobilized M. circinelloides URM 4182 whole-cells as a low-cost alternative to conventional biocatalysts in the production of ethyl esters from babassu oil.  相似文献   

18.
Pretreated cotton towels were used as carriers to immobilize Clostridium acetobutylicum CGMCC 5234 cells for butanol or ABE production from glucose and xylose. Results showed that cell immobilization was a promising method to increase butanol concentration, yield and productivity regardless of the sugar sources compared with cell suspension. In this study, a high butanol concentration of 10.02 g/L with a yield of 0.20 g/g was obtained from 60 g/L xylose with 9.9 g/L residual xylose using immobilized cells compared with 8.48 g/L butanol and a yield of 0.141 g/g with 20.2 g/L residual xylose from 60 g/L xylose using suspended cells. In mixed-sugar fermentation (30 g/L glucose plus 30 g/L xylose), the immobilized cultures produced 11.1 g/L butanol with a yield of 0.190 g/g, which were 28.3% higher than with suspended cells (8.65 g/L) during which 30 g/L glucose was utilized completely using both immobilized and suspended cells while 3.46 and 13.1 g/L xylose maintained untilized for immobilized and suspended cells, respectively. Based on the results, we speculated that immobilized cells showed enhanced tolerance to butanol toxicity and the cultures preferred glucose to xylose during ABE fermentation. Moreover, the cultures showed obvious difference when grown between high initial concentrations of glucose and those of xylose. Repeated-batch fermentations from glucose with immobilized cells showed better long-term stability than from xylose. At last, the morphologies of free and immobilized cells adsorbed on pretreated cotton towels during the growth cycle were examined by SEM.  相似文献   

19.
《Process Biochemistry》2007,42(5):895-898
Chitosan beads were prepared by emulsion method and used for the immobilization of ω-transaminase of Vibrio fluvialis. The yield of enzyme immobilization (54.3%) and its residual activity (17.8%) were higher than those obtained with other commercial beads. ω-Transaminase was effectively immobilized on the chitosan beads at pH 6.0. The optimal pH of the immobilized enzyme was pH 9.0, which is the same as that of the free enzyme. The immobilized enzyme on chitosan beads retained ca. 77% of its conversion after five consecutive reactions with the 25 mM substrate, while the immobilized enzyme on Eupergit® C retained 12%. Also, the immobilized ω-transaminase on chitosan bead retained 70% of initial activity when it's stored at 4 °C for 3.5 weeks. Addition of the co-factor, pyridoxal 5-phosphate (PLP), was needed to maintain the stability of the immobilized ω-transaminase.  相似文献   

20.
Abstract

Immobilization of cells offers advantages to the food process industries, including enhanced fermentation productivity and cell stability and reduced downstream processing costs due to facilitated cell recovery and recycle. This article summarizes the varied immobilization methodologies, including adsorption, entrapment, covalent binding, and microencapsulation. Examples of interest to the food industry are provided, together with a review of the physiological effects of immobilization. Topics in process engineering include immobilized cell bioreactor configurations and the scale-up potential of the various immobilization techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号