首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

2.
《Process Biochemistry》2014,49(7):1063-1070
Implementing of high strength vinegar fermentation is still the mission of vinegar producers. The aim of this study was to carry out high acidity vinegar fermentation efficiently based on comprehensive analysis on bacterial fermentation kinetics characteristics of Acetobacter pasteurianus CICIM B7003-02. In practice, semi-continuous vinegar fermentation was optimized with an optimal discharge/charge ratio of 34% of working volume (v/v), which resulted in a proper growth status of Acetobacter and beneficial to acetification. Then, a two-stage aeration protocol was adopted in the vinegar fermentation in line with the Acetobacter theoretical oxygen demand, by which both vinegar stoichiometric yield and acetification rate were improved effectively. As the final result, a titer of 93.09 ± 0.24 g/L acetic acid was achieved, the average acetification rate was enhanced to a level of 1.83 ± 0.01 g/L/h, and the vinegar stoichiometric yield was promoted to 93.97 ± 0.16%. The strategy and practice worked out from this study provided a valuable reference for performing large scale vinegar fermentation with higher strength.  相似文献   

3.
Chrysoperla genanigra Freitas is a common green lacewing associated with melon pests in the Northeastern Brazil. All life stages of this recently described species were studied under a range of constant temperature conditions (17, 21, 25, 29, 33, 35 and 37 °C), a photoperiod of 12 h:12 h (L:D) and 70 ± 10% relative humidity. Adults of C. genanigra were fed on a diet consisting of a 1:1 (v/v) mixture of brewer’s yeast and honey, while larvae were provided with eggs of Sitotroga cerealella (Olivier) ad libitum. The duration of preimaginal development of the species was inversely proportional to temperature and ranged from approximately 63 days at 17 °C to 15 days at 35 °C. The percentage of adult emergence varied from 6.7% at 17 °C to 76.7% at 25 °C, although no larvae were able to complete development at 37 °C. The lower thermal threshold for total preimaginal development was approximately 10.8 °C and the thermal requirement was 336.7 degree-days. Egg production, along with the longevity of both males and females, were significantly affected by temperature. It is concluded that the best temperature for rearing C. genanigra is 25 °C, with the lowest preimaginal mortality and the highest egg production (992.7 eggs/female).  相似文献   

4.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

5.
《Process Biochemistry》2010,45(9):1563-1569
A soil-isolated bacterium (strain B4) was identified as a species of Bordetella and deposited with the China General Microbiological Culture Collection (code, CGMCC 2229). The bacterium grew in a mineral medium, on cholesterol as a sole source of carbon and energy. Only one metabolite of cholesterol was accumulated in detectable amounts during the strain growth. It was identified as 4-cholesten-3-one. Cholesterol oxidase (COD) (EC 1.1.3.6), which catalyzes cholesterol into this metabolite, was evidenced from the strain. The conditions of the bacterium growth were optimized for extracellular enzyme production, which then reached around 1700 UL−1 within 24 h culturing. The enzyme was purified from the spent medium of the strain to homogeneity on SDS-PAGE, and characterized. Its molecular mass, as estimated by this technique, was 55 kDa. COD showed an optimum activity at pH 7.0. It was completely stable at pH 5.0 and 4 °C for 48 h, and retained 80% at least of its initial activity at pH 4.0 or at a pH of 6.0–10.0. The optimum temperature for its reaction was 37 °C. The thermal stability of COD was appreciable, as 90% or 80% of its initial activity was recovered after 1 h or 2 h incubation at 50 °C. Ag+ or Hg+ at 1 mM, was inhibitor of COD activity, while Cu2+, at the same concentration, was activator. The COD Km, determined at 37 °C and pH 7.0, was 0.556 mM. The enzyme was stable at pH 7.0 and 37 °C during 24 h mechanical shaking in the presence of 33% (v/v) of either of the solvents, dimethylsulfoxide, ethyl acetate, butanol, chloroform, benzene, xylene or cyclohexane.  相似文献   

6.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

7.
The mechanical properties of ventricular myocardium of the South American lungfish, Lepidosiren paradoxa, acclimated to 25 °C, were evaluated in vitro at 15, 25 and 35 °C. The inotropism (Fc—% of initial values) of ventricle strips was examined in response to adrenaline (from 10−8 to 10−5 M) and extracellular calcium (from 2.5 to 14.5 mM) in all experimental temperatures. At 15 and 25 °C, Fc rose when extracellular Ca2+ or adrenaline were increased, while Fc remained unchanged at 35 °C. These results suggest that at lower temperatures Ca2+ availability is a limiting step to cardiac performance and can be ameliorated by adrenergic stimulation. In contrast, since inotropic agents failed to increase cardiac inotropism at 35 °C, lungfish myocytes seem to show a high temperature sensitivity, which increases Ca2+-buffering capacity and/or Ca2+ transportation from and to cytosol as well as myofilaments Ca2+ sensitivity.  相似文献   

8.
An extracellular polygalacturonase (PGase) from Mucor rouxii NRRL 1894 was purified to homogeneity by two chromatographic steps using CM-Sepharose and Superdex 75. The purified enzyme was a monomer with a molecular weight of 43100 Da and a pI of 6. The PGase was optimally active at 35 °C and at pH 4.5. It was stable up to 30 °C and stability of PGase decrease rapidly above 60 °C. The extent of hydrolysis of different pectins was decreased with increasing of degrees of esterification. Except Mn2+, all the examined metal cations showed inhibitory effects on the enzyme activity. The apparent Km and Vmax values for hydrolyze of polygalacturonic acid (PGA) were 1.88 mg/ml and 0.045 μmol/ml/min, respectively. The enzyme released a series of oligogalacturonates from polygalacturonic acid indicating that it had an endo-action. Its N-terminal sequence showed homologies with the endopolygalacturonase from the psychrophilic fungus Mucor flavus.  相似文献   

9.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

10.
《Journal of Asia》2014,17(1):83-91
The developmental time and survival of the immature stages of Cnaphalocrocis medinalis Guenée were studied at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C), 40 ± 10% relative humidity, and a 16:8 h light:dark cycle. The total developmental time decreased with increasing temperature between 15 (115.6 days) and 32.5 °C (20.9 days), but increased above 32.5 °C. The relationship between the developmental rate and temperature was fitted by a linear model and three nonlinear developmental rate models (Logan 6, Briere 1, and Shi et al.). The nonlinear shape of temperature-dependent development was best described by the Briere 1 model (r2 = 0.99), and this was supported by statistical information criteria. The total mortality of immature C. medinalis was lowest at 25 °C (67.2%) and highest at 35 °C (98.1%). The distribution of the developmental times of each stage was described by the two-parameter Weibull distribution equation (r2 = 0.84–0.96). The predicted date for the cumulative 50% moth emergence was within a variation of one day using the Briere 1 model. The temperature-dependent developmental models for C. medinalis could be applied to determine an optimal management strategy for C. medinalis in paddy fields, and will be helpful in developing a full-cycle phenology model for C. medinalis.  相似文献   

11.
New ionic liquid-modified silica sorbents were developed by the surface chemical modification of the commercial silica using synthesized ionic liquids. The obtained ionic liquid-modified particles were successfully used as a special sorbent in solid-phase extraction process to isolation of cryptotanshinone, tanshinone I and tanshinone IIA from Salvia Miltiorrhiza Bunge. Different washing and elution solvents such as water, methanol and methanol–acetic acid (90/10, v/v) were evaluated. A comparison of ionic liquid-modified silica cartridges and traditional silica cartridge show that higher recovery was observed using ionic liquid-modified silica sorbents. A quantitative analysis was conducted by high-performance liquid chromatography using a C18 column (5 μm, 150 mm × 4.6 mm) with methanol–water (78:22, v/v, and containing 0.5% acetic acid) as a mobile phase. Good linearity was obtained from 0.5 × 10?4 to 0.5 mg/mL (r2 > 0.999) with the relative standard deviations less than 4.8%.  相似文献   

12.
Feruloyl esterases (Faes) are a subclass of the carboxylic esterases that hydrolyze the ester bonds between ferulic acid and polysaccharides in plant cell walls. Until now, the biochemical characteristics of FAEs from Bacillus spp. have not been reported. In this study, a strain with high activity of FAEs, Bacillus amyloliquefaciens H47 was screened from 122 Bacillus – type strains. Finally, three FAEs (BaFae04, BaFae06, and BaFae09) were identified. Comparing with other bacterial FAEs, these novel FAEs exhibited low sequence identities (less than 30%). The profiles of 52 esterase substrates showed that the three FAEs had a broad substrate spectrum and could effectively hydrolyze several common FAE substrates, such as methyl ferulate, ethyl caffeate, methyl p-coumarate, methyl sinapate, and chlorogenic acid. Furthermore, the three FAEs also can release ferulic acid from destarched wheat bran. They showed maximal activity with an optimal pH of 8.0 at 30 °C, 35 °C, and 40 °C, respectively. BaFae04 showed high stability in the temperature range of 25–60 °C for 1 h and retained 59% of its activity at 60 °C. The present study displays some useful characteristics of FAEs for potential industrial application and contributes to our understanding of FAEs.  相似文献   

13.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

14.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

15.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

16.
《Process Biochemistry》2014,49(10):1656-1663
A novel glycosyl hydrolase family 32 exo-inulinase (InuAGN25) gene was cloned from Sphingobacterium sp. GN25 isolated from feces of Grus nigricollis. InuAGN25 showed the highest identity of 54.3% with a putative levanase recorded in GenBank. Molecular-Activity strategy was proposed to predict InuAGN25 to be a low-temperature-active exo-inulinase before experiments performance. Molecular analyses included progressive sequential, phylogenetic and structural analyses. InuAGN25 was effectively expressed in Escherichia coli. The purified recombinant InuAGN25 showed characteristics of low-temperature-active enzymes: (1) the enzyme retained 55.8% of the maximum activity at 20 °C, 35.8% at 10 °C, and even 8.2% at 0 °C; (2) the enzyme exhibited 75.8, 30.5 and 10.8% of the initial activity after preincubation for 60 min at 45, 50 and 55 °C, respectively; (3) Km values of the enzyme toward inulin were 2.8, 3.0, 3.2 and 5.8 mg ml−1 at 0, 10, 20 and 40 °C, respectively. Fructose was the main product of inulin and Jerusalem artichoke tubers hydrolyzed by the purified recombinant InuAGN25 at room temperature, 10 °C and 0 °C. These results suggested the Molecular-Activity strategy worked efficiently and made InuAGN25 promising for the production of fructose at low temperatures.  相似文献   

17.
Ten different seaweed species were compared on the basis of lead uptake at different pH conditions. The brown seaweed, Turbinaria conoides, exhibited maximum lead uptake (at pH 4.5) and hence was selected for further studies. Sorption isotherms, obtained at different pH (4–5) and temperature (25–35 °C) conditions were fitted using Langmuir and Sips models. According to the Langmuir model, the maximum lead uptake of 439.4 mg/g was obtained at optimum pH (4.5) and temperature (30 °C). The Sips model better described the sorption isotherms with high correlation coefficients at all conditions examined. Various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated indicating that the present system was a spontaneous and endothermic process. Through potentiometric titrations, number of binding sites (carboxyl groups) and pK1 were determined as 4.1 mmol/g and 4.4, respectively. The influence of co-ions (Na+, K+, Mg2+ and Ca2+) on lead uptake was well pronounced in the case of divalent ions compared to monovalent ions. The solution of 0.1 M HCl successfully eluted all lead ions from lead-loaded T. conoides biomass. The regeneration experiments revealed that the alga could be successfully reused for five cycles without any loss in lead biosorption capacity. A glass column (2 cm i.d. and 35 cm height) was used to study the continuous lead biosorption performance of T. conoides. At 25 cm (bed height), 5 ml/min (flow rate) and 100 mg/l (initial lead concentration), T. conoides exhibited lead uptake of 220.1 mg/g. The column was successfully eluted using 0.1 M HCl, with elution efficiency of 99.7%.  相似文献   

18.
The germination characteristics of Alexandrium minutum cysts from the Fal estuary were studied at different conditions of temperature (4–24 °C) and salinity (15–35‰) and in the dark and low light intensity (2 μmol?2 s?1). Sediment sub-samples were directly cultured and processed at the end of the experiment for counts of non-germinated cysts. A decrease in the number of cysts was interpreted as germination that was calculated by comparison of the number of cysts over time with that of initial counts. The 50% germination time (time at which 50% of the total initial number of cysts had germinated) was calculated for each condition. A. minutum did not germinate in the dark but it germinated under all other conditions studied. Highest germination occurred at salinities of 30 psu and 35 psu and temperatures from 8 °C to 24 °C (germination rate—expressed as the inverse of the 50% germination time: 1.1–1.2). Lowest germination occurred at 15 psu and 4 °C and 24 °C (germination rate: 3.9–3.8). However, little variation in germination rates occurred across the conditions studied. As these conditions represent those likely in the estuary it is probable that A. minutum cysts on the surface of the sediments represent a constant source of cells to the water column and sediment disturbance (revealing buried cysts) could rapidly inoculate the water column with vegetative cells. This data was used to develop a model for Alexandrium germination from coastal sediments.  相似文献   

19.
Rheological comparisons have been made between preparations of high methoxy pectin (DE  70%) gelled by acidification with d-glucono-δ-lactone (GDL) on holding for 16 h at 25 °C in the presence of 60 wt% sucrose, and otherwise identical preparations gelled by acidification with citric acid at high temperature and cooling from 90 to 25 °C at 1 °C/min. Two series of experiments were carried out for both methods of acidification. In the first series, the concentration of pectin (c) was held constant at 1.0 wt% and the final pH attained after holding (with GDL) or cooling (with citric acid) was varied from 3.75 to 2.25. In the second series, the final pH was held constant at 3.0 and c was varied from 0.25 to 2.00 wt%. All samples were then heated (1 °C/min) from 25 to 90 °C. Rheological changes on cooling/holding and heating were characterised by low-amplitude oscillatory measurements of storage modulus (G′) and loss modulus (G′′) at 1 rad s?1 and 0.5% strain, and mechanical spectra were recorded at 25 °C. Selected samples, gelled with GDL, were also characterised by compression testing (at 25 °C), and a direct linear relationship was found between the logarithm of yield stress and log G′.The concentration-dependence of moduli for the samples acidified to pH 3.0 with GDL had the form typical of biopolymer gels, with log G′ versus log c approaching a limiting slope of 2 as c was raised above the minimum critical gelling concentration (co  0.3 wt%). Under all conditions of pH and pectin concentration studied, the values of G′′ (at 25 °C) for the samples acidified with citric acid were higher than those of the corresponding GDL-induced networks. The values of G′ were also higher, except at very low pH (below ~2.7 at c = 1.0 wt%) or very high concentrations of pectin. At pectin concentrations above ~1.5 wt%, the moduli of the samples gelled with citric acid (at pH 3.0) levelled out, or decreased slightly, with the values of G′ dropping below those of the GDL-induced networks towards the end of the concentration range studied (at c  2 wt%). All samples acidified with citric acid showed gel-like response (G > G′′) at 90 °C, attributed to hydrophobic association. The downturn in moduli at 25 °C for high concentrations of pectin is attributed to formation and disruption of strong networks during mixing with citric acid at high temperature (“pregelation”). It is suggested, however, that “weak gels” formed at lower concentrations or at pH values above ~2.7 may enhance gel properties by preserving a continuous network as hydrophobic junctions dissociate on cooling and are replaced by hydrogen-bonded junctions, in contrast to random percolation during gelation with GDL at 25 °C. On re-heating from 25 to 90 °C, the reverse processes (dissociation of hydrogen-bonded structures and formation of hydrophobic associations) were evident in an initial reduction and subsequent increase in moduli, as observed in previous studies. Similar heating traces were obtained for samples acidified with GDL to pH values above ~3.0 (at c = 1.0 wt%) or with pectin concentrations below ~1.0 wt% (at pH 3.0). However, at higher concentrations or lower values of pH (i.e. conditions favourable to extensive intermolecular association) an abrupt decrease in G′, with an accompanying maximum in G′′, was observed on heating through the temperature range ~60–80 °C. This is attributed to excessive hydrophobic association, causing collapse of network structure. It is further suggested that, for samples acidified with citric acid, there is preferential association of chain sequences of high ester content into hydrophobic junctions at 90 °C, leaving sequences with a high content of unesterified carboxyl groups available to form long hydrogen-bonded junctions during cooling, and thus giving gels that are stronger and more resistant to network collapse.  相似文献   

20.
《Journal of Asia》2014,17(2):135-142
This study was carried out to develop temperature-driven models for immature development and oviposition of the pink citrus rust mite Aculops pelekassi (Keifer). A. pelekassi egg development times decreased as the temperature increased, ranging from 6.6 days at 16 °C to 1.9 days at 35 °C. Total nymph development times decreased from 8.2 days at 16 °C to 3.3 days at 35 °C. The egg-to-adult development durations were 14.8, 11.6, 9.7, 8.0, 7.3, 6.1, and 5.2 days at 16, 20, 24, 26, 28, 32, and 35 °C, respectively. The lower developmental threshold temperatures for eggs, nymphs, and total egg-to-adult development were calculated as 9.3, 4.3, and 6.9 °C, respectively. The thermal constants were 54.0, 101.8, and 153.8 degree days for each of the above stages. The non-linear biophysical model fitted well for the relationship between the development rate and temperature for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of A. pelekassi. Adult longevity decreased as the temperature increased and ranged from 24.2 days at 16 °C to 14.6 days at 35.0 °C. A. pelekassi had a maximum fecundity of 33.1 eggs per female at 28 °C, which declined to 18.8 eggs per female at 16 °C. In addition, three temperature-dependent components for an oviposition model of A. pelekassi were developed with sub-models estimated: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate. The oviposition model, coupled with the stage emergence model, should be useful to construct a population model for A. pelekassi in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号