首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring efforts within the CMR network.  相似文献   

2.
Seafloor habitats on continental shelf margins are increasingly being the subject of worldwide conservation efforts to protect them from human activities due to their biological and economic value. Quantitative data on the epibenthic taxa which contributes to the biodiversity value of these continental shelf margins is vital for the effectiveness of these efforts, especially at the spatial resolution required to effectively manage these ecosystems. We quantified the diversity of morphotype classes on an outcropping reef system characteristic of the continental shelf margin in the Flinders Commonwealth Marine Reserve, southeastern Australia. The system is uniquely characterized by long linear outcropping ledge features in sedimentary bedrock that differ markedly from the surrounding low-profile, sand-inundated reefs. We characterize a reef system harboring rich morphotype classes, with a total of 55 morphotype classes identified from the still images captured by an autonomous underwater vehicle. The morphotype class Cnidaria/Bryzoa/Hydroid matrix dominated the assemblages recorded. Both α and β diversity declined sharply with distance from nearest outcropping reef ledge feature. Patterns of the morphotype classes were characterized by (1) morphotype turnover at scales of 5 to 10s m from nearest outcropping reef ledge feature, (2) 30 % of morphotype classes were recorded only once (i.e. singletons), and (3) generally low levels of abundance (proportion cover) of the component morphotype class. This suggests that the assemblages in this region contain a considerable number of locally rare morphotype classes. This study highlights the particular importance of outcropping reef ledge features in this region, as they provide a refuge against sediment scouring and inundation common on the low profile reef that characterizes this region. As outcropping reef features, they represent a small fraction of overall reef habitat yet contain much of the epibenthic faunal diversity. This study has relevance to conservation planning for continental shelf habitats, as protecting a single, or few, areas of reef is unlikely to accurately represent the geomorphic diversity of cross-shelf habitats and the morphotype diversity that is associated with these features. Equally, when designing monitoring programs these spatially-discrete, but biologically rich outcropping reef ledge features should be considered as distinct components in stratified sampling designs.  相似文献   

3.
ABSTRACT Because habitat loss and fragmentation threaten giant pandas (Ailuropoda melanoleuca), habitat protection and restoration are important conservation measures for this endangered species. However, distribution and value of potential habitat to giant pandas on a regional scale are not fully known. Therefore, we identified and ranked giant panda habitat in Foping Nature Reserve, Guanyinshan Nature Reserve, and adjacent areas in the Qinling Mountains of China. We used Mahalanobis distance and 11 digital habitat layers to develop a multivariate habitat signature associated with 247 surveyed giant panda locations, which we then applied to the study region. We identified approximately 128 km2of giant panda habitat in Foping Nature Reserve (43.6% of the reserve) and 49 km2in Guanyinshan Nature Reserve (33.6% of the reserve). We defined core habitat areas by incorporating a minimum patch-size criterion (5.5 km2) based on home-range size. Percentage of core habitat area was higher in Foping Nature Reserve (41.8% of the reserve) than Guanyinshan Nature Reserve (26.3% of the reserve). Within the larger analysis region, Foping Nature Reserve contained 32.7% of all core habitat areas we identified, indicating regional importance of the reserve. We observed a negative relationship between distribution of core areas and presence of roads and small villages. Protection of giant panda habitat at lower elevations and improvement of habitat linkages among core habitat areas are important in a regional approach to giant panda conservation.  相似文献   

4.
ABSTRACT To ensure adequate protection of nonbreeding habitats used by Neotropical migratory landbirds, we must first address questions about habitat use and quality. On the Yucatan peninsula, migrants use many habitats, several of which remain unstudied, and methodological differences preclude interhabitat comparisons based on studies to date. We used distance sampling along line transects in six habitats in northeast Belize to examine use of previously unstudied habitats (e.g., salt marsh) by Neotropical migrants and to permit comparison across habitats. We calculated unadjusted and adjusted (for detectability) density estimates for individual migrant species and for all species combined to generate hypotheses about habitat quality based on the assumption that density and quality are positively correlated. Adjusted density estimates for all migrants were highest in black mangrove habitat (1799 ± 110 ind/km2), intermediate in three forest types and milpa (range 598–802 ind/km2), and lowest in salt marsh (207 ± 32.3 ind/km2). By combining density estimates with habitat availability in our study region, we estimated that evergreen forest and black mangrove supported 70% and 9% of the region's migrant population, respectively. At the species level, five of the 10 most common species had habitat preferences (>50% detections in one habitat). Given the diversity of habitat preferences among species and apparent seasonal movements, our results indicate that Neotropical migrants in northeast Belize are dependent on a matrix of interconnected habitats.  相似文献   

5.
Dung‐heap counts were used to estimate density of grey duiker (Sylvicapra grimmia Linnaeus 1758) in the Matobo National Park, Zimbabwe. To test assumptions of this method, defecation rate and defecation site selection were investigated under captive and field conditions, and densities were compared with independent estimates derived from territory mapping. Many assumptions were violated: males defecated more frequently than females with mean dry mass per deposit greater in females, but total daily faecal production was similar between sexes. Spatial distribution of faeces was clumped, and 52.8% of locations contained multiple deposits. Duikers exhibited habitat type preferences (i.e. low‐ to medium‐density woodland) with herbaceous layer heights 40–100 cm and visibility >20 m. Calculated grey duiker density from dung‐heap counts in cleared plots was 9.7 ± 1.3 animals km−2, approximately double the territory‐mapping estimate based on Minimum Convex Polygons (5.13 animals km−2) but similar to the 75% Fixed Kernel estimate (10.95 animals km−2). Provided that sex ratios approach parity and sampled area is representative of all utilized habitats, violation of basic assumptions of the dung‐heap count method has a minor effect on density estimate accuracy.  相似文献   

6.
Changes in coral habitats from benthic maps at two minimum mapping units (4 and 400 m2) were examined across 600 ha at the Puerto Rico insular shelf. The maps were produced by visually interpreting high resolution side scan sonar seafloor mosaics. Comparisons were performed by using published spatial indices based on patch size and abundance. At the fine scale, small coral patches were dominant and had more complex shapes, while coarse scale maps lost information on small or rare habitats, but included new mixed habitat categories that helped conserve estimates of total habitat area. Variations in spatial indices occurred across spatial scales, but trends were not necessarily predictable. For instance, habitat diversity increased at the coarse scale maps, but habitat richness remained unchanged. Differences were related as much to the peculiarities of the abundance, shape and arrangement of habitats at the two sites as to changes in grain size.  相似文献   

7.
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.  相似文献   

8.
Aim Resources can shape patterns of habitat utilization. Recently a broad foraging dichotomy between oceanic and coastal sites has been revealed for loggerhead sea turtles (Caretta caretta). Since oceanic and coastal foraging sites differ in prey availability, we might expect a gross difference in home‐range size across these habitats. We tested this hypothesis by equipping nine adult male loggerhead sea turtles with GPS tracking devices. Location National Marine Park of Zakynthos (NMPZ) Greece, central and eastern Mediterranean (Adriatic, Ionian and Aegean seas). Methods In 2007, 2008 and 2009, Fastloc GPS‐Argos transmitters were attached to nine male loggerheads. In addition, a Sirtrack PTT unit was attached to one male in 2007. Four of the turtles were tracked on successive years. We filtered the GPS data to ensure comparable data volumes. Route consistency between breeding and foraging sites of the four re‐tracked turtles was conducted. Foraging site home range areas and within site movement patterns were investigated by the fixed kernel density method. Results Foraging home range size ranged between circa 10 km2 at neritic habitats (coastal and open‐sea on the continental shelf) to circa 1000 km2 at oceanic sites (using 90% kernel estimates), the latter most probably reflecting sparsely distributed oceanic prey. Across different years individuals did not follow exactly the same migration routes, but did show fidelity to their previous foraging sites, whether oceanic or neritic, with accurate homing in the final stages of migration. Main conclusions The broad distribution and diverse life‐history strategies of this population could complicate the identification of priority marine protected areas beyond the core breeding site.  相似文献   

9.
Using a case study of an isolated management unit of Sichuan snub‐nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species’ habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least‐cost model for the current period (1960–1990) and the 2050s (2041–2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least‐cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high‐priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.  相似文献   

10.
Abstract: Historically, bobcats (Lynx rufus) were found throughout the Corn Belt region, but they nearly disappeared from this area due to habitat loss and unregulated harvest that occurred during the century after European settlement. Reports of bobcat occurrences have been increasing in Iowa, USA, and biologists would like to understand the mechanisms enabling bobcats to recolonize this fragmented agricultural landscape. We determined space use and habitat selection of bobcats by radiocollaring 68 bobcats in south-central Iowa during 2003–2006. We triangulated 12,966 locations and recovered an additional 1,399 3-dimensional locations from Global Positioning System collars. We used a fixed kernel estimator to calculate 95% utilization distributions (UDs) for home ranges and 50% UDs for cores. Annual home range area of males (x̄ = 58.6 km2, 95% CI = 49.2–69.9) was nearly 3 times that of females (x̄=19.9 km2, 95% CI = 17.0–23.3). Females used smaller home ranges during April-September when they were suspected to have kittens with them (x̄ = 16.8 km2, 95% CI = 13.7–20.7), as compared to October-March (x̄ = 24.1 km2, 95% CI = 19.0–30.7), whereas home ranges of males did not differ between seasons. Similarly, core area of males (x̄ = 7.7 km2, 95% CI = 6.2–9.6) was larger than that of females (x̄ = 2.3 km2, 95% CI = 1.9–2.7). Females used significantly smaller cores in April-September (x̄ = 1.8 km2, 95% CI = 1.4–2.3) as compared to October-March (x̄ = 2.8 km2, 95% CI = 2.2–3.7), whereas males did not. For both sexes, compositional analysis indicated that forest habitat was ranked higher than all other habitat classes at both the landscape and local scale. Standardized habitat selection ratios illustrate that female and male bobcats selected forest habitat about twice as frequently as any other habitat class, including grassland and Conservation Reserve Program land. Predictive models indicated that home range and core area was smaller in landscapes where perennial forest and grassland habitats were less fragmented. Predictive models indicated home ranges were more irregular in shape in landscapes where row crop patches were less aggregated within home ranges. Our results have practical implications for wildlife managers regarding expected bobcat habitat use and distribution as the species becomes more abundant in the agricultural landscape of the Midwest.  相似文献   

11.
Population surveys of Sulawesi crested black macaques (Macaca nigra) were conducted on the Indonesian islands of Sulawesi and Bacan in 1992–1994 to assess the status of natural populations and determine habitat and anthropogenic factors affecting their population densities. We surveyed five sites for primates, including undisturbed and disturbed habitats. Data were collected on habitat structure and composition at two undisturbed and one disturbed forest site in which the primates were surveyed. The highest density of macaques was found in primary forest at Gunung Sibela Nature Reserve on Bacan (170.3 individuals/km2). Population density in logged forest on Bacan was high but significantly less than primary forest (133.4 individuals/km2). The high density of crested black macaques in primary forest on Bacan is best explained by the high carrying capacity found in primary forest. The lower food quantity and quality of food resources found in logged forest correlated with lower primate densities compared to primary forest. However, the large population of macaques in logged forest demonstrates the conservation value of such forest. Densities on Sulawesi at Tangkoko-Batuangas-DuaSudara Nature Reserve (TBDS) showed a continuing decline since earlier surveys. Primate densities were highest near the protected center of Tangkoko Reserve (66.7 individuals/km2). The peripheral areas of Batuangas and DuaSudara, even though adjacent and continuous, showed lower population densities of 46.4 and 23.5 individuals/km2, respectively. The best explanation for the continued decline of Macaca nigra populations at TBDS is hunting. Unless conservation measures are implemented immediately, M. nigra on Sulawesi risks extinction in the near future. Am. J. Primatol. 44:89–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Abundance estimates for black bears (Ursus americanus) are important for effective management. Recently, DNA technology has resulted in widespread use of noninvasive, genetic capture–mark–recapture (CMR) approaches to estimate populations. Few studies have compared the genetic CMR methods to other estimation methods. We used genetic CMR to estimate the bear population at 2 study sites in northern New Hampshire (Pittsburg and Milan) in 2 consecutive years. We compared these estimates to those derived from traditional methods used by the New Hampshire Fish and Game Department (NHFG) using hunter harvest and mortality data. Density estimates produced with genetic CMR methods were similar both years and were comparable to those derived from traditional methods. In 2006, the estimated number of bears in Pittsburg was 79 (95% CI = 60–98) corresponding to a density of 15–24 (95% CI) bears/100 km2; the 2007 estimate was 83 (95% CI = 67–99; density = 16–24 bears/100 km2). In 2006, the estimated number of bears in Milan was 95 (95% CI = 74–117; density = 16–25 bears/100 km2); the 2007 estimate was 96 (95% CI = 77–114; density = 17–25 bears/100 km2). We found that genetic CMR methods were able to identify demographic variation at a local scale, including a strongly skewed sex ratio (2 M:1 F) in the Milan population. Genetic CMR is a useful tool for wildlife managers to monitor populations of local concern, where abundance or demographic characteristics may deviate from regional estimates. Future monitoring of the Milan population with genetic CMR is recommended to determine if the sex ratio bias continues, possibly warranting a change in local harvest regimes. © 2011 The Wildlife Society.  相似文献   

13.
ABSTRACT The abundance and distribution of carnivores and their habitat are key information needed for status assessment, conservation planning, population management, and assessment of the effects of human development on their habitat and populations. We developed a habitat quality rating system, using existing wolverine (Gulo gulo) distribution, wolverine food, ecosystem mapping, and human development data. We used this and empirically derived estimates of wolverine density to predict wolverine distribution and abundance at a provincial scale. Density estimates for wolverines in high-quality habitat averaged 6.2 wolverines/1,000 km2 (95% CI = 4.2–9.5). We predicted mean densities ranging from 0.3/1,000 km2 in rare-quality habitat to 4.1/1,000 km2 in moderate-quality habitat. Our predicted population estimate for wolverines in British Columbia was 3,530 (95% CI = 2,700-4,760). We predicted highest densities of wolverines in interior mountainous regions, moderate densities in interior plateau and boreal forest regions, and low densities in mainland coastal regions and drier interior plateaus. We predicted that wolverines would be rare on Vancouver Island, along the outer mainland coast, and in the dry interior forests, and absent from the Queen Charlotte Islands, interior grassland environments, and areas of intensive urban development.  相似文献   

14.
Predicting how marine mammal populations respond to habitat changes will be essential for developing conservation management strategies in the 21st century. Responses to previous environmental change may be informative in the development of predictive models. Here we describe the likely effects of the last ice age on grey seal population size and distribution. We use satellite telemetry data to define grey seal foraging habitat in terms of the temperature and depth ranges exploited by the contemporary populations. We estimate the available extent of such habitat in the North Atlantic at present (between 1.42·106 km2 and 2.07·106 km2) and at the last glacial maximum (between 4.74·104 km2 and 2.11·105 km2); taking account of glacial and seasonal sea-ice coverage, estimated reductions of sea-level (123 m) and sea surface temperature hind-casts. Most of the extensive continental shelf waters (North Sea, Baltic Sea and Scotian Shelf), currently supporting >95% of grey seals, were unavailable during the last glacial maximum. A combination of lower sea-level and extensive ice-sheets, massively increased seasonal sea-ice coverage and southerly extent of cold water would have pushed grey seals into areas with no significant shelf waters. The habitat during the last glacial maximum might have been as small as 3% of today''s extent and grey seal populations may have fallen to similarly low numbers. An alternative scenario involving a major change to a pelagic or bathy-pelagic foraging niche cannot be discounted. However, hooded seals currently dominate that niche and may have excluded grey seals from such habitat. If as seems likely, the grey seal population fell to very low levels it would have remained low for several thousand years before expanding into current habitats over the past 12,000 years or so.  相似文献   

15.
Species distribution models (SDM) can be valuable for identifying key habitats for conservation management of threatened taxa, but anthropogenic habitat change can undermine SDM accuracy. We used data for the Red Siskin (Spinus cucullatus), a critically endangered bird and ground truthing to examine anthropogenic habitat change as a source of SDM inaccuracy. We aimed to estimate: (1) the Red Siskin's historic distribution in Venezuela; (2) the portion of this historic distribution lost to vegetation degradation; and (3) the location of key habitats or areas with both, a high probability of historic occurrence and a low probability of vegetation degradation. We ground‐truthed 191 locations and used expert opinion as well as landscape characteristics to classify species' habitat suitability as excellent, good, acceptable, or poor. We fit a Random Forest model (RF) and Enhanced Vegetation Index (EVI) time series to evaluate the accuracy and precision of the expert categorization of habitat suitability. We estimated the probability of historic occurrence by fitting a MaxLike model using 88 presence records (1960–2013) and data on forest cover and aridity index. Of the entire study area, 23% (20,696 km2) had a historic probability of Red Siskin occurrence over 0.743. Furthermore, 85% of ground‐truthed locations had substantial reductions in mean EVI, resulting in key habitats totaling just 976 km2, in small blocks in the western and central regions. Decline in Area of Occupancy over 15 years was between 40% and 95%, corresponding to an extinction risk category between Vulnerable and Critically Endangered. Relating key habitats with other landscape features revealed significant risks and opportunities for proposed conservation interventions, including the fact that ongoing vegetation degradation could limit the establishment of reintroduced populations in eastern areas, while the conservation of remaining key habitats on private lands could be improved with biodiversity‐friendly agri‐ and silviculture programs.  相似文献   

16.
Habitat conservation, and hence conservation of biodiversity hinges on knowledge of the spatial distribution of habitats, not least those that are particularly valuable or vulnerable. In offshore Norway, benthic habitats are systematically surveyed and described by the national programme MAREANO (Marine AREAl database for NOrwegian waters). Benthic habitats and biotopes are defined in terms of the species composition of their epibenthic megafauna. Some habitats are of special conservation interest on account of their intrinsic value and/or vulnerability (e.g., long-lived species, rareness, to comply with international regulations such as OSPAR). In Norway, off Nordland and Troms, the following habitats of special interest can be found: Umbellula encrinus Stands, Radicipes sp. Meadows, Deep Sea Sponge Aggregations, Seapen and Burrowing Megafauna Communities, Hard Bottom Coral Gardens. In this paper, we used underwater video data collected within the MAREANO programme to define and describe benthic habitats and biotopes of special interest, and to map the geographic distribution thereof by means of habitat modelling.We first evaluated the community structure of each habitat in the list using a SIMPROF test. We determined that the class Deep Sea Sponge Aggregations, as defined by OSPAR, had to be split into at least three classes. We then re-defined seven new types of ecological features, including habitats and biotopes that were sufficiently homogeneous. Then we modelled the spatial distributions of these habitats and biotopes using Conditional Inference Forests. Since the purpose of the distribution maps is to support spatial planning we classified the heat maps using density thresholds.The accuracy of models ranged from fair to excellent. Hard Bottom Coral Gardens were the most rare habitat in terms of total area predicted (224 km2, 0.3% of the area modelled), closely followed by Radicipes Meadows (391 km2, 0.6%). Soft Bottom Demosponges (Geodid sponges and other taxa) represent the largest habitat, with a predicted area of 9288 km2 (14%). Distribution maps of classes defined by habitat-forming species (Hard Bottom Coral Gardens) were more reliable than those defined by a host of species, or where no single species was a clear habitat provider (e.g. Seapen and Burrowing Megafauna Communities). We also put forward that a scale of patchiness larger than the scale of observation, and homogeneity of the community both play a role in model performance, and hence in map usefulness. These along with density threshold values based on observed data should all be taken into account in marine classifications and habitat definitions.  相似文献   

17.
对保护区内的关键种开展保护工作时,其同域分布相似种的保护研究也具有重要价值。较大地理尺度上看,黑麂的分布区被小麂完全覆盖,如能掌握二者适宜栖息地的重叠状况,揭示其共存机制,将有助于保护策略的制定和整合管理。2017—2020年在浙江清凉峰国家级自然保护区利用红外相机技术分别获得黑麂和小麂的分布位点38个和101个,结合8个环境因子,采用MaxEnt模型对研究区域内黑麂和小麂的潜在适宜栖息地进行了预测和重叠性分析。结果表明:(1)黑麂和小麂潜在适宜栖息地主要位于龙塘山区域西南部,千顷塘区域中部和顺溪坞区域西北部,以及千顷塘区域与龙塘山区域间的山脉和顺溪坞南部山区,二者的潜在适宜栖息地面积分别586.66 km2和661.93 km2,分别占研究区域的36.67%和41.37%。(2)黑麂和小麂的生态重叠指数较高,其D值和I值分别为0.82和0.97,它们的总适宜栖息地重叠面积为435.39 km2,分别占黑麂和小麂总适宜栖息地面积的72.22%、65.78%。(3)黑麂和小麂对环境因子的选择相似,黑麂主要选择海拔较高、离水...  相似文献   

18.
In this study, we mapped the distribution of Cold-Water Coral (CWC) habitats on the northern Ionian Margin (Mediterranean Sea), with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km2 between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS)-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM) of the seafloor at a 40 m grid cell size and associated terrain parameters) and large-scale maps (i.e. Side-Scan Sonar (SSS) mosaics of 1 m in resolution ground-truthed using underwater video observations) were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features) associated with CWC habitat occurrences was widespread over a total area of 600 km2. Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km2 where different coral facies (characterized using video analyses and mapped on SSS mosaics) represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats) provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.  相似文献   

19.
Most methods of estimating chimpanzee population densities rely on nest counts. We tested the most frequently used techniques on a known chimpanzee community living in the rainforest of the Taï National Park, Côte d’Ivoire. The best density estimates are given by counts that assume groups of nests to be distributed randomly and that use the mean group size for homogenous habitat but the median for heterogenous habitats. Correction for real forest cover within the region should be made because chimpanzees make nests only in forested regions. This method gave the exact chimpanzee density for the Taï population, i.e. 1.7 nest builders/km2. For the nationwide survey, we first estimated the chimpanzee density for different types of habitat (e.g. intact primary forest: 1.64 chimpanzees/km2; degraded forests: 0.4 chimpanzees/km2; human encroached forests and mosaic habitats: 0.09 chimpanzees/km2). Second, we estimated the total forest cover of the country with satellite pictures. This gave an estimated chimpanzee population in Côte d’Ivoire of about 11,676 ± 1,168 individuals, which equals the number of spectators at a soccer game in an average European town. Sadly, only three National Parks may have chimpanzee populations large enough to be viable, whereas the rest are scattered and isolated small populations that are already threatened in their survival.  相似文献   

20.
张博鑫  李崇林  左小康  那晓东 《生态学报》2024,44(12):5194-5205
目前全球变暖趋势的加剧对丹顶鹤等大型濒危水禽的栖息地造成了严重的威胁。由于监测方法和技术手段的限制,丹顶鹤在迁徙路线上潜在生境的分布范围尚不清楚,气候变化对丹顶鹤迁徙路线生境适宜性的影响机理有待进一步研究。基于138个丹顶鹤样本分布信息和19种环境变量数据,利用 BIOMOD2 软件包构建了丹顶鹤潜在生境评价的组合模型,对丹顶鹤在亚洲东部秋季迁徙路线上的生境适宜性进行数值模拟,并预测SSP1.2-6气候背景下2021-2040年、2041-2060年、2061-2080年、2081-2100年四个不同阶段的丹顶鹤潜在生境范围的变化趋势。研究结果表明:与单模型的模拟结果相比,集成9种单模型的BIOMOD2组合模型预测精度更高。集成模型的重要性分析表明,气温日较差是丹顶鹤生境适宜性变化的最重要的影响因子。受气候变化的影响2021-2040年、2041-2060年、2061-2080年、2081-2100年丹顶鹤潜在生境的面积将分别减少到2.60×105km2、2.58×105km2、2.75×105km2、2.56×105km2,迁徙路线上胶东半岛和环渤海地区适栖生境面积减少的最为显著。本研究对于迁徙路线上珍稀水禽潜在适宜生境的模拟及全球变化背景下珍稀水禽栖息地的保育和修复具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号