首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current work aims to stimulate the production of rhoifolin and tiliroside as two valuable phytochemicals from Chorisia chodatii Hassl. and Chorisia speciosa A. St.-Hil. callus cultures. A comparison between three explants from the in vitro germinated seedlings of both species for callus induction and accumulation of both flavonoids was carried out. Highly efficient calluses were induced from the leaves, stems and roots of C. chodatii seedlings on Gamborg’s B5 (B5) and Murashige and Skoog (MS) media containing 2.0 mg/l β-naphthalene acetic acid (NAA) and 0.5 mg/l 6-benzyladenin (BA) or kinetin (Kn), while those of C. speciosa seedlings efficiently produced calluses on both media supplemented with 0.5 or 1.0 mg/l NAA and 0.5 mg/l BA. Besides, the highest contents of rhoifolin (1.927 mg/g DW) and tiliroside (1.776 mg/g DW) from C. speciosa cultures were obtained from the calluses of seedlings’ roots and stems maintained on B5 medium containing 1.0 mg/l NAA and 0.5 mg/l BA, respectively. On the other hand, the maximum rhoifolin content (0.555 mg/g DW) from C. chodatii cultures was obtained from the calluses of seedlings’ stems grown on B5 medium supplemented with 2.0 mg/l NAA and 0.5 mg/l BA, whereas the highest tiliroside content (0.547 mg/g DW) was provided by the root explants on B5 medium containing 2.0 mg/l NAA and 0.5 mg/l Kn. Both flavonoids were bioaccumulated in greater amounts than the wild and cultivated intact plants, which provides a promising tool for their future commercial production under a controlled environment, independent of climate and soil conditions.  相似文献   

2.
The aim of this research was to identify a low cost medium based on commercial products and by-products that provided maximum Bacillus subtilis CPA-8 growth and maintained biocontrol efficacy. Low cost media combining economical nitrogen and carbon sources such as yeast extract, peptone, soy products, sucrose, maltose and molasses were tested. Tests were carried out in 250-ml flasks containing 50 ml of each tested medium. Maximum cell growth (>3 × 109 CFU ml?1) was obtained in defatted soy flour 44% combined with sucrose or molasses media. Second, CPA-8 production was scaled up in a 5-l fermenter and CPA-8 population dynamics, pH and oxygen consumption in the optimized medium (defatted soy flour 44% – molasses) was recorded. In these tests, there was a 5-h lag phase before growth, after which exponential growth occurred and maximum production was 3 × 109 CFU ml?1 after 20 h. Fruit trials with cells and cell free supernatants from CPA-8 grown in optimized medium maintained biocontrol efficacy against Monilinia fructicola on peaches, resulting in disease reductions up to 95%. CPA-8 populations survived in wounds on inoculated peaches, regardless of the culture media used. The results show that B. subtilis CPA-8 can be produced in a low cost medium combining inexpensive nitrogen and carbon sources (40 g l?1 defatted soy flour 44%, 5 g l?1 molasses plus mineral trace supplements) in shake flasks and a laboratory fermenter (5 l). The results could be used to provide a reliable basis for scaling up the fermentation process to an industrial level.  相似文献   

3.
Ligninolytic enzyme production and polyphenolic compound extraction by liquid-state culture of Phanerochaete chrysosporium ATCC 24275 was investigated by employing apple pomace sludge and synthetic medium. Different physico-chemical and biological parameters namely viscosity, zeta potential and particle size, viability and enzyme production were investigated. The ligninolytic enzyme production was higher in apple pomace sludge (45 U/l of laccase, 220 U/l of MnP and 6.5 U/l of LiP) than in synthetic medium (17 U/l of laccase, 37 U/l of MnP and 6 U/l). These maximal activities were found during the stationary and decline phase. It was also found that enzyme production was strongly correlated with P. chrysoporium viability in both synthetic medium and apple pomace sludge. Moreover, physico-chemical parameters, such as particle size, zeta potential and viscosity were strongly correlated to the viability of P. chrysosporium and to the ligninolytic enzyme production. An increase in polyphenol content extracted by acetone (383–720 mg GAE/l) was observed during fermentation of apple pomace and it was found that the polyphenol content extracted by ethanol increased ~1.5 fold until 67 h of fermentation and later it decreased. It was found that antioxidant activity increased to 35% and eventually decreased based on the change in the polyphenol content.  相似文献   

4.
《Process Biochemistry》2007,42(5):847-855
The psychrotrophic bacterium Pseudomonas fluorescens BM07 was induced to excrete an extracellular biopolymer when cells were grown aerobically at 10 °C and its secretion was inhibited at 30 °C. The biopolymer was easily torn apart from the cells by using a shear force under centrifugation (8700 × g, 30 min) and collected as a well-separated mucoid layer in centrifuge tube. The production of the biopolymer was affected by factors such as the types of carbon and nitrogen sources, temperature, and pH. The best production of 2.5 g/l was obtained when the cells were grown on M1 medium containing 70 mM sucrose and 0.2% (w/v) Casamino Acids. In Kings B enriched medium a maximum biopolymer production of up to 3.4 g/l and growth rate of 2.1 g/l, were achieved using 1:1 ratio of C/N. Addition of NaCl and ethanol to the medium led to a decrease in biopolymer production and growth rate of BM07 strain. FT-IR spectroscopy demonstrated the presence of carboxyl, amine, hydroxyl and methoxyl functional groups in the biopolymer. BM07 biopolymer showed high ion binding capacity with particular preference to uptake cadmium and mercury (∼45 and 70%, respectively). The percentage removal of cobalt, zinc, nickel and copper cations were between 20 and 30%. Overall ion uptake by BM07 biopolymer showed a definite preference for larger over smaller cations (Hg > Cd > Ni > Zn > Cu > Co).  相似文献   

5.
《Process Biochemistry》2007,42(10):1460-1464
Limiting ergosterol accumulation through metabolic control increased lycopene production by Blakeslea trispora. Lycopene and ergosterol are both biosynthesized from a common precursor, farnesyl diphosphate (FPP). The effects of two ergosterol biosynthesis inhibitors, terbinafine hydrochloride (TH) and ketoconazole, on the production of lycopene by B. trispora were investigated. TH at 0.7 mg/l and ketoconazole at 30 mg/l added to the medium at 48 h of fermentation caused an increase in lycopene content of 23% or 277%, respectively. The timing of addition for both inhibitors at 48 h resulted in the most optimal lycopene productivity, however, compared with TH, ketoconazole was superior in enhancing lycopene production by inhibiting ergosterol biosynthesis.  相似文献   

6.
《Microbiological research》2014,169(12):948-953
Bacteriocins synthesized by entomopathogenic Bacillus thuringiensis are gaining attention owing to their inhibitory effects against a wide variety of pathogenic bacteria. In the present study, we purified and characterized Tolworthcin 524, a bacteriocin synthesized by B. thuringiensis subsp. tolworthi, and compared it with other bacteriocins synthesized by B. thuringiensis. Tolworthcin 524 was separated and purified from the secretome of B. thuringiensis by fast protein liquid chromatography with a gel filtration column to obtain yields of 17% and a specific activity of ∼3600 U/mg protein. The purified product showed two peptides of ∼9 and 6 kDa with antimicrobial activity in a gel-screening assay. The purified product was analyzed by two-dimensional electrophoresis and the resolved peptides of ∼9 and 6 kDa with isoelectric points of ∼8 were sequenced. Partial sequences (METPVVQPR and DWTCWSCLVCAACS) were obtained suggesting that the ∼9 and 6 kDa correspond to the prebacteriocin and mature Tolworthcin 524, respectively. Sequences showed high identity with Thurincin H and Thuricin 17 and had a conserved motif with other bacteriocins of B. thuringiensis. Based on sequence data, Tolworthcin 524 was classified in subclass II.2 (Thuricin-like peptides) of the Bacillus bacteriocin classification scheme. The larger peptide did not harbor a sequence suggestive of a signal peptide neither did it contain the double-glycine (GG) motif characteristic of the secretion leader recognized by the ABC transport system. Implications of these properties in Tolworthcin 524 secretion are discussed.  相似文献   

7.
Eicosapentaenoic acid (EPA), a well-known member of omega-3 fatty acids, is considered to have a significant health promoting role in the human body. It is an essential fatty acid as the human body lacks the ability to produce it in vivo and must be supplemented through diet. Microbial EPA represents a potential commercial source. GC/MS analyses confirmed that bacterial isolate 717, similar to Shewanella pacifica on the basis of 16S rRNA sequencing, is a potential high EPA producer. Two types of bioreactors, a Stirred Tank Reactor (STR) and an Oscillatory Baffled Reactor (OBR), were investigated in order to choose the optimum system for EPA production. The EPA production media was optimised through the selection of media components in a Plackett–Burman (PB) design of experiment followed by a Central Composite Design (CCD) to optimise the concentration of medium components identified as significant in the Plackett–Burman experiment. The growth conditions for the bioreactor, using artificial sea water (ASW) medium, were optimised by applying Response Surface Methodology (RSM). This optimisation strategy resulted in an increase in EPA from 33 mg/l (10 mg/g biomass), representing 8% of the total fatty acids at shake flask level, to 350 mg/l (46 mg/g biomass) representing 25% of the total fatty acids at bioreactor level. During this study the main effects and the interactions between the bioreactor growth conditions were revealed and a polynomial model of EPA production was generated. Chemostat experiments were performed to test the effect of growth rate and temperature on EPA production.  相似文献   

8.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

9.
This study examined the effect of different elicitors (seven, different concentrations) and environmental factors (water activity (aw), pH) on taxol production by strains of two endophytic fungi, Paraconiothyrium variabile and Epicoccum nigrum, isolated from temperate yew trees. A defined liquid broth medium was modified with elicitors, solute aw depressors at different pH values. For P. variabile, the best elicitor was salicylic acid at 50 mg/l which gave a taxol yield of 14.7 ± 4.8 μg/l. The study of synergistic effects between elicitor, aw and pH on taxol production showed that the highest yield of taxol (68.9 ± 11.9 μg/l) was produced under modified ionic stress of 0.98 aw (KCl) at pH 5 when supplemented with 20 mg/l of salicylic acid. For E. nigrum, serine was the best elicitor which increased yield significantly (29.6 fold) when KCL was used as the aw depressor (0.98 aw) at pH 5.0 with 30 mg/l of serine. The maximum taxol yield produced by E. nigrum was 57.1 ± 11.8 μg/l. Surface response models were used to build contour maps to determine the conditions for maximum and marginal conditions for taxol yield in relation to the best elicitor and aw, and the best pH for the first time. This will be beneficial for identifying key parameters for improvement of taxol yields by endophytic fungi.  相似文献   

10.
Traditional batch fermentation leads to a higher energy consumption and lower production capability because of longer culture time. In this work, a pilot scale bioreactor composed of a 3000 L fermentor and external ceramic microfiltration equipment was used to perform cell-recycle fermentation. Repeat feeding medium was also used to relieve the substrate inhibition. In such pilot system, the maximum yield and productivity of l(+)-lactic acid production reached 157.22 ± 3.42 g/L and 8.77 ± 0.15 g/L/h which were 4.23% and 315.64% higher than those of batch fermentation, respectively, when equal amount of sugar was consumed. The cost of l(+)-lactic acid production was successfully reduced about two-thirds by the increase of yield and productivity. 12 rounds of cell-recycle fermentations were successfully achieved in the pilot system. The membrane filtration productivity reached to 61.27 ± 2.74 L/m2/h which increased 172.80%, while the cell damaging rate dropped to 3.88 ± 0.18% which decreased 85.77%, compared with those of the ultrafiltration. Furthermore, the ceramic microfiltration membrane showed advantages in tolerance for the temperature, pressure and acid, compared with the organic ultrafiltration membrane. The experimental results indicated that the method could give a reference for low cost production of l(+)-lactic acid in an industrial scale.  相似文献   

11.
Sequential optimization strategy based on statistical experimental designs was employed to enhance glucan production by Leuconostoc dextranicum NRRL B-1146 in flask culture. A two-level Plackett–Burman design was employed first where 11 variables were studied for their influence on glucan production. Sucrose, peptone and yeast extract were the most significant variables improving glucan production. A three-level Box–Behnken factorial design was employed for maximizing the glucan production. A mathematical model was developed to show the effects of each medium component and their combinatorial interactions on glucan production. The optimal medium composition for maximum glucan production was sucrose 5.95%, peptone 0.52% and yeast extract 2.9%. This composition predicted 1063 mg/l glucan, the experimentally found glucan was 1015 ± 4.5 mg/l that showed a good agreement with the predicted value. The purified glucan was homogenous and its structural characteristics investigated by FT-IR, 1H NMR and 13C NMR spectroscopic techniques showed that it contained α-(1  6) and α-(1  4) linkages.  相似文献   

12.
The enzymatic route for biodiesel production has been noted to be cost ineffective due to the high cost of biocatalysts. Reusing the biocatalyst for successive transesterification cycles is a potential solution to address such cost inefficiency. However, when organic solvent like methanol is used as acyl-acceptor in the reaction, the biocatalyst (lipase) gets severely inactivated due to the inhibitory effect of undissolved methanol in the reaction medium. Thus, organic solvent–tolerant lipase is highly desirable for enzymatic transesterification. In response to such desirability, a lipase (LS133) possessing aforesaid characteristic was extracted from Streptomyces sp. CS133. Relative molecular mass of the purified LS133 was estimated to be 39.8 kDa by SDS-PAGE. Lipase LS133 was stable in pH range 5.0–9.0 and at temperature lower than 50 °C while its optimum lipolytic activity was achieved at pH 7.5 and 40 °C. It showed the highest hydrolytic activity towards long chain p-nitrophenyl palmitate with Km and Vmax values of 0.152 mM and 270.2 mmol min?1 mg?1, respectively. It showed non-position specificity for triolein hydrolysis. The first 15 amino acid residues of its N-terminal sequence, AIPLRQTLNFQAXYQ, were noted to have partial similarity with some of the previously reported microbial lipases. Its catalytic involvement in biodiesel production process was confirmed by performing enzymatic transesterification of vegetable oils with methanol.  相似文献   

13.
A clonal mass propagation to obtain mountainous sources of Rheum coreanum Nakai, a rare medicinal plant in Democratic People’s Republic of Korea was established by rhizome tissue culture. Whole plants were selected and collected as a vigorous individual free from blights and harmful insects among wild plants of R. coreanum grown on the top of Mt. Langrim (1.540 m above the sea) situated at the northern extremity of Democratic People’s Republic of Korea. Induction of the callus was determined using four organs separated from the whole plant and different plant growth regulators. The callus was successfully induced from rhizome explant on MS medium containing 2.4-D (0.2–0.3 mg/l). In the MS medium supplemented with a combination of BAP (2 mg/l) and NAA (0.2 mg/l), single NAA (0.5 mg/l), or IBA (0.5 mg/l), a higher number of shoot, root and plantlets was achieved. The survival rate on the mountainous region of the plantlets successfully acclimatized (100%) in greenhouse reached 95%, and yields of crude drug and contents of active principles were higher than those obtained by sexual and vegetative propagation. This first report of R. coreanum tissue culture provides an opportunity to control extinction threats and an efficient callus proliferation system for growing resources rapidly on a large scale.  相似文献   

14.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

15.
Bacterial cellulose (BC) has unique properties, such as high crystallinity, a high degree of polymerisation, high tensile strength and high purity, compared with native cellulose. In this study, a previously determined BC production medium was improved in static culture, and the production cost was evaluated and compared with molasses and with other defined media, such as Hestrin–Schramm, Zhou, Yamanaka and Park, using Gluconacetobacter xylinus. In addition to this analysis, because the surface area/volume ratio is an important parameter in static culture, different surface area/volume ratios were analysed in the range of 0.2–1.46. The defined medium (M1A05P5) and culture type contained glucose (10 g/L), yeast extract (10 g/L), peptone (7 g/L), acetic acid (1.5 ml/L), and ethanol (5 ml/L), and the pH was adjusted to 5.0 in static culture. The highest productivity was observed in the M1A05P5 medium that was 5-fold higher than either molasses or Park's medium. Although the molasses medium was proposed as a cost-effective medium, the production price of BC was the lowest in the M1A05P5 medium. Therefore, the newly developed medium and strategy were highly promising candidates for the industrial-scale production of BC.  相似文献   

16.
Polyphosphate (polyP), synthesized by polyP kinase (PPK) using the terminal phosphate of ATP as substrate, performs important functions in every living cell. The present work reports on the relationship between polyP metabolism and bioinsecticide production in Bacillus thuringiensis subsp. israelensis (Bti). The ppk gene of Bti was cloned into vector pHT315 and the effect of its overexpression on endotoxin production was determined. Endotoxin production by the recombinant strain was found to be consistently higher than that by the wild type strain and the strain that carried the empty plasmid. The toxicity of the recombinant mutant strain (LC50 5.8 ± 0.6 ng ml?1) against late 2nd instar Culex quinquefasciatus was about 7.7 times higher than that of Bti (LC50 44.9 ± 7 ng ml?1). To our knowledge this is the first reported study which relates polyP metabolism with bioinsecticide biosynthesis.  相似文献   

17.
Hildegardia species are an important resource for fiber industry. This investigation was conducted to develop a plant regeneration protocol for Hildegardia populifolia (Roxb.) Schott & Endl. via indirect organogenesis Callus was obtained from leaf, internode and petiole explants, among these explants internode explant gave best result on MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). The highest percentage (100%) of regeneration was obtained with benzyladenine (BA) (2.0 mg/l) + indole-3-acetic acid (IAA) (0.1 mg/l) + glutamine (25 mg/l) + thidiazuron (TDZ) (0.5 mg/l) from internode explants. Shootlets were highly rooted on MS medium supplemented with 3.0 mg/l indole-3-butyric acid (IBA). In vitro rooted seedlings were successfully acclimatized. This in vitro regeneration system will facilitate further development of reliable procedures for this genus.  相似文献   

18.
Two fungal cyclooligomer depsipeptide synthetases (CODSs), BbBEAS (352 kDa) and BbBSLS (348 kDa) from Beauveria bassiana ATCC 7159, were reconstituted in Saccharomyces cerevisiae BJ5464-NpgA, leading to the production of the corresponding anticancer natural products, beauvericins and bassianolide, respectively. The titers of beauvericins (33.8±1.4 mg/l) and bassianolide (21.7±0.1 mg/l) in the engineered S. cerevisiae BJ5464-NpgA strains were comparable to those in the native producer B. bassiana. Feeding d-hydroxyisovaleric acid (d-Hiv) and the corresponding l-amino acid precursors improved the production of beauvericins and bassianolide. However, the high price of d-Hiv limits its application in large-scale production of these cyclooligomer depsipeptides. Alternatively, we engineered another enzyme, ketoisovalerate reductase (KIVR) from B. bassiana, into S. cerevisiae BJ5464-NpgA for enhanced in situ synthesis of this expensive substrate. Co-expression of BbBEAS and KIVR in the yeast led to significant improvement of the production of beauvericins. The total titer of beauvericin and its congeners (beauvericins A–C) was increased to 61.7±3.0 mg/l and reached 2.6-fold of that in the native producer B. bassiana ATCC 7159. Supplement of l-Val at 10 mM improved the supply of ketoisovalerate, the substrate of KIVR, which consequently further increased the total titer of beauvericins to 105.8±2.1 mg/l. Using this yeast system, we functionally characterized an unknown CODS from Fusarium venenatum NRRL 26139 as a beauvericin synthetase, which was named as FvBEAS. Our work thus provides a useful approach for functional reconstitution and engineering of fungal CODSs for efficient production of this family of anticancer molecules.  相似文献   

19.
《Process Biochemistry》2010,45(2):223-229
Bacterial l-asparaginase has been widely used as therapeutic agent in the treatment of various lymphoblastic leukemia diseases. Studies on localization and production of novel glutaminase-free l-asparaginase were performed using Pectobacterium carotovorum MTCC 1428. The localization of l-asparaginase was carried out using cell fractionation techniques. The activity of l-asparaginase was found to be 85 and 77% in the cytoplasm of P. carotovorum MTCC 1428 grown on medium containing l-asparagine and combination of l-asparagine and glucose respectively. Among the tested carbon sources, l-asparagine or the combination of l-asparagine and glucose was found to be the most suitable carbon sources to maximize the production of l-asparaginase. The maximum production of l-asparaginase was observed to be 14.56 U/ml (26.92 U/mg of protein) at 4 and 2 g/l of l-asparagine and glucose respectively. Yeast extract, l-asparagine and peptone have shown significant effect on the production of l-asparaginase. P. carotovorum MTCC 1428 has assimilated l-asparagine as an essential carbon source for maximizing the production of l-asparaginase.  相似文献   

20.
Leptadenia reticulata (Retz.) Wight. & Arn. is an important medicinal plant, belongs to the family Asclepiadaceae. This plant is known for its medicinal uses since 4500 BC. Presently this is an endangered species (Arya et al., 2003). Six shoots (2–4 cm long) per node differentiated on MS medium + 5.0 mg/l of BAP + additives. Incorporation of additives in the culture medium promoted growth of cultures. The shoots differentiated per explant were repeatedly transferred on to fresh MS + 1.0 mg/l of BAP + 0.1 mg/l of NAA and additives. The regenerated shoots were subcultured for further multiplication on MS + 1.0 mg/l BAP + 0.5 mg/l Kin + 2-iP (0.5 mg/l) and 0.1 mg/l of NAA + additives regularly after an interval of 3 weeks. Addition of ammonium sulphate in the medium resulted in increase in shoot number and promoted elongation also growth of cultures was sustained even if subculturing was delayed (26 ± 2 days). Success was also achieved in defining protocol for in vitro regeneration of shoots from petiole derived callus. Shoots regenerated in vitro by both processes were rooted in vitro on 1/4 strength of MS medium + 3.0 mg/l of IBA after 15–20 days. Cent percent of the shoots rooted ex vitro, if the in vitro regenerated shoots were treated with 200 mg/l of IBA. The in vitroex vitro rooted plantlets were hardened under different regimes of temperature and humidity in a greenhouse. The hardened plantlets were transferred to soil in polybags. More than 95% plants survived in field conditions. Total dry biomass harvested per year was 2800 kg/acre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号