首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Potato (Solanum tuberosum L.) tubers are susceptible to infection by Erwinia carotovora, causal agent of bacterial soft rot, when wounded and subjected to wet, hypoxic environments. The expression of two putative plant defense genes, extensin and phenylalanine ammonia-lyase (PAL), was examined by monitoring their respective mRNA levels and cell wall hydroxyproline levels in tuber tissues under various conditions leading to susceptibility or resistance and after inoculation with E. carotovora in order to assess the possible roles of these genes and their products in this plant-pathogen interaction. Extensin and PAL mRNA levels as well as cell wall hydroxyproline levels accumulated markedly in response to wounding and subsequent aerobic incubation. Extensin and PAL mRNA levels as well as cell wall hydroxyproline levels decreased in response to wounding and subsequent anaerobic incubation; these changes were correlated with high susceptibility of tuber tissue to E. carotovora infection. Inoculation of wound sites with E. carotovora caused some additional accumulation of the wound-regulated extensin and PAL mRNAs under certain aerobic conditions, but never under anaerobic conditions.  相似文献   

5.
Two groups of anaerobic genes (genes induced in anaerobic cells and repressed in aerobic cells) are negatively regulated by heme, a metabolite present only in aerobic cells. Members of both groups, the hypoxic genes and the DAN/TIR/ERG genes, are jointly repressed under aerobic conditions by two factors. One is Rox1, an HMG protein, and the second, originally designated Rox7, is shown here to be Mot3, a global C2H2 zinc finger regulator. Repression of anaerobic genes results from co-induction of Mot3 and Rox1 in aerobic cells. Repressor synthesis is triggered by heme, which de-represses a mechanism controlling expression of both MOT3 and ROX1 in anaerobic cells; it includes Hap1, Tup1, Ssn6 and a fourth unidentified factor. The constitutive expression of various anaerobic genes in aerobic rox1Δ or mot3Δ cells directly implies that neither factor can repress by itself at endogenous levels and that stringent aerobic repression results from the concerted action of both. Mot3 and Rox1 are not essential components of a single complex, since each can repress independently in the absence of the other, when artificially induced at high levels. Moreover, the two repression mechanisms appear to be distinct: as shown here repression of ANB1 by Rox1 alone requires Tup1–Ssn6, whereas repression by Mot3 does not. Though artificially high levels of either factor can repress well, the absolute efficiency observed in normal cells when both are present—at much lower levels—demonstrates a novel inhibitory synergy. Evidently, expression levels for the two mutually dependent repressors are calibrated to permit a range of variation in basal aerobic expression at different promoters with differing operator site combinations.  相似文献   

6.
7.
We have previously reported that theSaccharomyces cerevisiae CRS5 metallothionein gene is negatively regulated by oxygen. The mechanism of this repression was the focus of the current study. We observed that the aerobic repression ofCRS5 is rapid and occurs within minutes of exposing anaerobic cultures to air. Furthermore, theCUP1 metallothionein gene ofS. cerevisiae was found to be subject to a similar down-regulation of gene expression. We provide evidence that the aerobic repression of yeast metallothioneins involves copper ions and Ace1, the coppertrans-activator ofCUP1 andCRS5 gene expression. A functional Ace1 binding site was found to be necessary for the aerobic repression ofCRS5. Moreover, the aerobic down-regulation of the metallothioneins was abolished when cells were treated with elevated levels of copper. Our studies show that anaerobic cultures accumulate higher levels of copper than do aerobic cells and that this copper is rapidly lost when cells are exposed to air. In fact, the kinetics of this copper loss closely parallels the kinetics ofCUP1 andCRS5 gene repression. The yeast metallothionein genes, therefore, serve as excellent markers for variations in copper accumulation and homeostasis that occur in response to changes in the oxidative status of the cell.  相似文献   

8.
9.
Induction and repression of denitrification activity were studied in a continuous culture of Paracoccus denitrificans during changes from aerobic to anaerobic growth conditions and vice versa. The denitrification activity of the cells was monitored by measuring the formation of denitrification products (nitrite, nitric oxide, nitrous oxide, and dinitrogen), individual mRNA levels for the nitrate, nitrite, and nitrous oxide reductases, and the concentration of the nitrite reductase enzyme with polyclonal antibodies against the cd1-type nitrite reductase. On a change from aerobic to anaerobic respiration, the culture entered an unstable transition phase during which the denitrification pathway became induced. The onset of this phase was formed by a 15- to 45-fold increase of the mRNA levels for the individual denitrification enzymes. All mRNAs accumulated during a short period, after which their overall concentration declined to reach a stable value slightly higher than that observed under aerobic steady-state conditions. Interestingly, the first mRNAs to be formed were those for nitrate and nitrous oxide reductase. The nitrite reductase mRNA appeared significantly later, suggesting different modes of regulation for the three genes. Unlike the mRNA levels, the level of the nitrite reductase protein increased slowly during the anaerobic period, reaching a stable value about 30 h after the switch. All denitrification intermediates could be observed transiently, but when the new anaerobic steady state was reached, dinitrogen was the main product. When the anaerobic cultures were switched back to aerobic respiration, denitrification of the cells stopped at once, although sufficient nitrite reductase was still present. We could observe that the mRNA levels for the individual denitrification enzymes decreased slightly to their aerobic, uninduced levels. The nitrite reductase protein was not actively degraded during the aerobic period.  相似文献   

10.
11.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

12.
Summary In order to test the possibility of producing ethanol under aerobic conditions, 4 mitochondrial mutants of Saccharomyces cerevisiae lacking the capacity to respire were assayed for ethanol and biomass yield. As controls the corresponding wild strains were tested under anaerobic and aerobic conditions. In the latter case respiration was blocked by catabolite repression. The data show that the respiratory deficient mutants yield slightly less ethanol than the anaerobically grown wild strains, but more than those grown aerobically. Therefore, if for technical reasons aerobic fermentation is necessary, the use of mitochondrial mutants would be economically advantageous.  相似文献   

13.
《FEMS yeast research》2005,5(3):213-230
The first protein map of an ale-fermenting yeast is presented in this paper: 205 spots corresponding to 133 different proteins were identified. Comparison of the proteome of this ale strain with a lager brewing yeast and the Saccharomyces cerevisiae strain S288c confirmed that this ale strain is much closer to S288c than the lager strain at the proteome level. The dynamics of the ale-brewing yeast proteome during production-scale fermentation was analysed at the beginning and end of the first and the third usage of the yeast (called generation in the brewing industry). During the first generation, most changes were related to the switch from aerobic propagation to anaerobic fermentation. Fewer changes were observed during the third generation but certain stress-response proteins such as Hsp26p, Ssa4p and Pnc1p exhibited constitutive expression in subsequent generations. The ale brewing yeast strain appears to be quite well adapted to fermentation conditions and stresses.  相似文献   

14.
Summary In comparison with intact yeast, dehydrated-rehydrated cells of Saccharomyces cerevisiae show significantly higher ethanol production from exogenous substrate under both anaerobic and aerobic conditions, particularly when low concentration (0.1%) of glucose are used. For populations with a higher percentage of viable rehydrated cells (above 70%) a more notable decrease in the Pasteur effect (the difference between the quantity of ethanol formed under anaerobic and aerobic conditions) is observed.  相似文献   

15.
16.
The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.  相似文献   

17.
Dental plaque anaerobes may be associated with the etiology of periodontal disease. This has created an interest in the potential pathogenicity of oral anaerobes. We compared the metabolic activity of anaerobic corynebacteria (C. parvum, C. anaerobium) and corresponding aerobic species (C. diphtheriae, C. xerosis). The anaerobes exhibited lower levels of growth rate, m-RNA half-life and ribosomal efficiency but much higher levels of RNA synthesis, ranging from 5 to 10 fold over the aerobes. We further examined these anaerobes, plusActinomyces naeslundi N16 (isolated from the anaerobic region of periodontally-diseased tissues), for the influence of redox potential on RNA level and antigenic function. Notable increases in RNA were found at specific Eh levels; the extent and direction of the changes varied with the different organisms. This environmental feature appeared to effect corresponding changes in agglutinability and PCA reactivity with antisera against the anaerobes cultured at different redox potentials. For example, while antisera against certain organisms (C. parvum, A. naeslundi) cultured under the most reduced conditions showed an intense PCA reaction, other antisera against the same organism cultured under less reduced conditions were non-reactive. Hence, alterations in redox potential may lead to altered metabolism and to altered antigenicity. Our results imply such a microbial response to environmental stress.  相似文献   

18.
We have characterised aSaccharomyces cerevisiae cDNA (cDNA13), originally isolated on the basis of the short half-life of the corresponding mRNA. We show here that its sequence is closely related to that of the genes encoding ribosomal proteins K37, KD4 and K5 ofSchizosaccharomyces pombe. ‘mRNA13’ also behaves like other mRNAs encoding ribosomal proteins, in that its abundance increases sharply when glucose is added to cells grown on ethanol (nutrient-up shift), and declines when cells are subjected to a mild heat-shock. Unspliced mRNA13 accumulates when cells bearing a temperature-sensitive splicing mutation are grown at the restrictive temperature. The gene(s) corresponding to cDNA13, like other ribosomal protein genes ofS. cerevisiae, thus contain an intron. Southern blot analysis indicates the presence of two separate loci related to cDNA13 in theS. cerevisiae genome. From the sequence of one of these, a complete polypeptide sequence was deduced. The first 40 amino acids are identical to those of YL6, aS. cerevisiae ribosomal protein characterised only by N-terminal protein sequence analysis. There is clear evidence within the genomic sequence for the predicted intron, and for elements similar to those that regulate expression of otherS. cerevisiae ribosomal protein genes.  相似文献   

19.
20.
Under anaerobic growth conditions the isomeric 4,4′,14-trimethylcholestane derivatives lanosterol and, more efficiently, cycloartenol satisfy the sterol requirement of the yeast sterol auxotroph Saccharomyces cerevisiae strain GL7. Aerobic mutant growth is supported only by cycloartenol and not by lanosterol, suggesting different structural requirements for aerobic and anaerobic cells. It is proposed that the non-planar conformation imposed by the 9,19-cyclopropane ring of cycloartenol moderates the adverse membrane effects of the nuclear methyl groups at C-4 and C-14. Under both aerobic and anaerobic conditions cyclolaudenol, a C-24-methyl derivative of cycloartenol, is a significantly more effective sterol source for strain GL7 than cycloartenol. This result is in keeping with the predominance of C-24-methyl sterols (ergosterol) in wild-type yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号