首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao J  Fussmann GF  Ramsay JO 《Biometrics》2008,64(3):959-967
Summary .   Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator–prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator–prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.  相似文献   

2.
3.
4.
Kochi N  Matache MT 《Bio Systems》2012,108(1-3):14-27
In this paper we provide a mean-field Boolean network model for a signal transduction network of a generic fibroblast cell. The network consists of several main signaling pathways, including the receptor tyrosine kinase, the G-protein coupled receptor, and the Integrin signaling pathway. The network consists of 130 nodes, each representing a signaling molecule (mainly proteins). Nodes are governed by Boolean dynamics including canalizing functions as well as totalistic Boolean functions that depend only on the overall fraction of active nodes. We categorize the Boolean functions into several different classes. Using a mean-field approach we generate a mathematical formula for the probability of a node becoming active at any time step. The model is shown to be a good match for the actual network. This is done by iterating both the actual network and the model and comparing the results numerically. Using the Boolean model it is shown that the system is stable under a variety of parameter combinations. It is also shown that this model is suitable for assessing the dynamics of the network under protein mutations. Analytical results support the numerical observations that in the long-run at most half of the nodes of the network are active.  相似文献   

5.
Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system – a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more quantitative data become available on individual proteins, the RNN would be able to refine parameter estimation and mapping of temporal dynamics of individual signalling molecules as well as signalling networks as a system. Moreover, RNN can be used to modularise large signalling networks.  相似文献   

6.
7.
Cao J  Wang L  Xu J 《Biometrics》2011,67(4):1305-1313
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data.  相似文献   

8.
9.
In most biological studies and processes, cell proliferation and population dynamics play an essential role. Due to this ubiquity, a multitude of mathematical models has been developed to describe these processes. While the simplest models only consider the size of the overall populations, others take division numbers and labeling of the cells into account. In this work, we present a modeling and computational framework for proliferating cell populations undergoing symmetric cell division, which incorporates both the discrete division number and continuous label dynamics. Thus, it allows for the consideration of division number-dependent parameters as well as the direct comparison of the model prediction with labeling experiments, e.g., performed with Carboxyfluorescein succinimidyl ester (CFSE), and can be shown to be a generalization of most existing models used to describe these data. We prove that under mild assumptions the resulting system of coupled partial differential equations (PDEs) can be decomposed into a system of ordinary differential equations (ODEs) and a set of decoupled PDEs, which drastically reduces the computational effort for simulating the model. Furthermore, the PDEs are solved analytically and the ODE system is truncated, which allows for the prediction of the label distribution of complex systems using a low-dimensional system of ODEs. In addition to modeling the label dynamics, we link the label-induced fluorescence to the measure fluorescence which includes autofluorescence. Furthermore, we provide an analytical approximation for the resulting numerically challenging convolution integral. This is illustrated by modeling and simulating a proliferating population with division number-dependent proliferation rate.  相似文献   

10.
This paper presents a practical numerical method for separatingand estimating growth and mortality coefficients in stage- orsize-structured populations using only observations of the relativeor absolute abundance of each stage. The method involves writinga system of linear ordinary differential equations (ODEs) modellingthe rate of change of abundance. The solution of the differentialsystem can be numerically approximated using standard (e.g.sixth-order Runge-Kutta-Felhberg) methods. An optimization problemwhose solutions yield ‘optimal’ coefficients fora given model is formulated. The ODE numerical integration techniquecan then be employed to furnish required function and gradientinformation to the optimization algorithm. The data-fittingsoftware package ODRPACK is then successfully employed to estimateoptimal coefficients for the ODE population model. Simulationexperiments with four- and eight-stage model populations illustratethat the method results in the successful estimation of coefficientsof mortality and growth from abundance data.  相似文献   

11.
We develop a systems based model for prostate cancer, as a sub-system of the organism. We accomplish this in two stages. We first start with a general ODE that includes organism response terms. Then, to account for normally observed spatial diffusion of cell populations, the ODE is extended to a PDE that includes spatial terms. Numerical solutions of the full PDE are provided, and are indicative of traveling wave fronts. This motivates the use of a well known transformation to derive a canonically related (non-linear) system of ODEs for traveling wave solutions. For biological feasibility, we show that the non-negative cone for the traveling wave system is time invariant. We also prove that the traveling waves have a unique global attractor. Biologically, the global attractor would be the limit for the avascular tumor growth. We conclude with comments on clinical implications of the model.  相似文献   

12.
The parameter identifiability problem for dynamic system ODE models has been extensively studied. Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of parameters when the model is unidentifiable has not received as much attention and the problem is not fully resolved for nonlinear ODEs. Identifiable combinations are useful, for example, for the reparameterization of an unidentifiable ODE model into an identifiable one. We extend an existing algorithm for finding globally identifiable parameters of nonlinear ODE models to generate the ‘simplest’ globally identifiable parameter combinations using Gröbner Bases. We also provide sufficient conditions for the method to work, demonstrate our algorithm and find associated identifiable reparameterizations for several linear and nonlinear unidentifiable biomodels.  相似文献   

13.
14.
Optical biosensors are often used to measure kinetic rate constants associated with chemical reactions. Such instruments operate in the surface–volume configuration, in which ligand molecules are convected through a fluid-filled volume over a surface to which receptors are confined. Currently, scientists are using optical biosensors to measure the kinetic rate constants associated with DNA translesion synthesis—a process critical to DNA damage repair. Biosensor experiments to study this process involve multiple interacting components on the sensor surface. This multiple-component biosensor experiment is modeled with a set of nonlinear integrodifferential equations (IDEs). It is shown that in physically relevant asymptotic limits these equations reduce to a much simpler set of ordinary differential equations (ODEs). To verify the validity of our ODE approximation, a numerical method for the IDE system is developed and studied. Results from the ODE model agree with simulations of the IDE model, rendering our ODE model useful for parameter estimation.  相似文献   

15.
Isothermal titration calorimetry (ITC) produces a differential heat signal with respect to the total titrant concentration. This feature gives ITC excellent sensitivity for studying the thermodynamics of complex biomolecular interactions in solution. Currently, numerical methods for data fitting are based primarily on indirect approaches rooted in the usual practice of formulating biochemical models in terms of integrated variables. Here, a direct approach is presented wherein ITC models are formulated and solved as numerical initial value problems for data fitting and simulation purposes. To do so, the ITC signal is cast explicitly as a first-order ordinary differential equation (ODE) with total titrant concentration as independent variable and the concentration of a bound or free ligand species as dependent variable. This approach was applied to four ligand-receptor binding and homotropic dissociation models. Qualitative analysis of the explicit ODEs offers insights into the behavior of the models that would be inaccessible to indirect methods of analysis. Numerical ODEs are also highly compatible with regression analysis. Since solutions to numerical initial value problems are straightforward to implement on common computing platforms in the biochemical laboratory, this method is expected to facilitate the development of ITC models tailored to any experimental system of interest.  相似文献   

16.
We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.  相似文献   

17.

Background  

Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable.  相似文献   

18.
19.
Methods for modeling cellular regulatory networks as diverse as differential equations and Boolean networks co-exist, however, without much closer correspondence to each other. With the example system of the fission yeast cell cycle control network, we here discuss these two approaches with respect to each other. We find that a Boolean network model can be formulated as a specific coarse-grained limit of the more detailed differential equations model for this system. This demonstrates the mathematical foundation on which Boolean networks can be applied to biological regulatory networks in a controlled way.  相似文献   

20.
Understanding the integrated behavior of genetic regulatory networks, in which genes regulate one another's activities via RNA and protein products, is emerging as a dominant problem in systems biology. One widely studied class of models of such networks includes genes whose expression values assume Boolean values (i.e., on or off). Design decisions in the development of Boolean network models of gene regulatory systems include the topology of the network (including the distribution of input- and output-connectivity) and the class of Boolean functions used by each gene (e.g., canalizing functions, post functions, etc.). For example, evidence from simulations suggests that biologically realistic dynamics can be produced by scale-free network topologies with canalizing Boolean functions. This work seeks further insights into the design of Boolean network models through the construction and analysis of a class of models that include more concrete biochemical mechanisms than the usual abstract model, including genes and gene products, dimerization, cis-binding sites, promoters and repressors. In this model, it is assumed that the system consists of N genes, with each gene producing one protein product. Proteins may form complexes such as dimers, trimers, etc. The model also includes cis-binding sites to which proteins may bind to form activators or repressors. Binding affinities are based on structural complementarity between proteins and binding sites, with molecular binding sites modeled by bit-strings. Biochemically plausible gene expression rules are used to derive a Boolean regulatory function for each gene in the system. The result is a network model in which both topological features and Boolean functions arise as emergent properties of the interactions of components at the biochemical level. A highly biased set of Boolean functions is observed in simulations of networks of various sizes, suggesting a new characterization of the subset of Boolean functions that are likely to appear in gene regulatory networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号