首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—The injection of ethanol in mice produced a transient rise in 5-hydroxyindoleacetic acid (5-HIAA) levels in brain. However, no concomitant changes in serotonin (5-HT) levels were noted. In an attempt to explain the biochemical mechanism by which ethanol produced this effect, uptake of tryptophan by brain, serotonin turnover in brain, and transport of 5-HIAA from brain were investigated. No changes in tryptophan levels or uptake into brain of ethanol-treated mice were noted. Ethanol 3 g/kg was found to decrease serotonin turnover. Ethanol was also demonstrated to inhibit the removal of 5-HIAA from the central nervous system, and was found to be an inhibitor of 5-HIAA uptake by isolated choroid plexus. The inhibition of biogenic acid transport was noted even at sub-hypnotic levels of ethanol.  相似文献   

2.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

3.
Cerebrospinal fluid (CSF) was removed from the third ventricle of anesthetized male, female, and ovariectomized rats. CSF 3,4-dihydroxyphenylethylamine and serotonin metabolite levels [dihydroxyphenylacetic acid, homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA)] were determined on 15-min samples by liquid chromatography coupled with electrochemical detection. Monoamine oxidase inhibition was used for studying metabolite turnover in the CSF. No difference was observed between male, ovariectomized, and sham-operated female rats. However, ventricular CSF HVA and 5-HIAA levels were significantly higher in the ovariectomized than in the sham-operated rats. These differences do not reflect effects of ovariectomy on brain metabolite production but indicate slower metabolite elimination from the CSF.  相似文献   

4.
Abstract: HPLC determination of histamine, serotonin, dopamine, and noradrenaline in the brain tissue of rats with portocaval anastomoses (PCA) has revealed a selective increase in histamine concentration. In the posterior hypothalamus, the steady-state level of the amine metabolites showed an inverse pattern; N-tele -methylhistamine(t-MeHA), as estimated by gas chromatography-mass spectrometry, was not changed significantly by portocaval shunting, whereas 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid were more than doubled. Interestingly, the net increase in t-MeHA concentration in response to pargyline (80 mg/kg i.p.) was almost the same for PCA and sham-operated rats. This implies that the great enhancement of the histamine level in this area might be a consequence of the persistent stimulation of its synthesis and the unchanged activity of histaminergic neurons. In the rest of the brain, on the other hand, the steady-state level of t-MeHA was higher after PCA (3.8-fold), as were the levels of 5-HIAA and homovanillic acid. Surprisingly, t-MeHA remained unchanged after monoamine oxidase blockade. Of the pargyline-induced alterations in the concentrations of indoles and catechols, the most pronounced were those in the serotonin level; serotonin was elevated more than twofold in hypothalamus and more than 12-fold in the rest of the brain, with a concomitant 80% decrease in 5-HIAA. The dopamine and, to a much smaller extent, noradrenaline levels were also increased, and the levels of homovanillic acid and 3,4-dihydroxyphenylacetic acid fell below the detection limit. The study suggests that at least two different mechanisms operate in the brains of PCA rats to counteract the excessive synthesis of neuromediators, e.g., increased deposition and increased metabolism.  相似文献   

5.
An investigation was made into the effects of running (1 h at 20 m/min) on central serotonergic and dopaminergic metabolism in trained rats. Methodology involved continuous withdrawal of cerebrospinal fluid (CSF) from the third ventricle of conscious rats and measurements of tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) levels during a 2 h post-exercise period. All three compounds were increased during the hour following exercise and returned to their basal values within an hour later. CSF flow rate was stable when metabolite levels were elevated. Brain determinations indicated that CSF metabolite variations only qualitatively paralleled brain changes. Indeed, post-exercise TRP, 5-HIAA, and HVA levels were increased to a greater extent in brain when compared to CSF. It is suggested that increased serotonergic and dopaminergic metabolism, caused by motor activity, may be involved in the behavioral effects of exercise.  相似文献   

6.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

7.
Single administration of lithium hydroxybutyrate (10 mg/kg) to rabbits decreased serotonin and 5-hydroxyindoleacetic acid (5-HIAA) content in the caudate nucleus. The drug administration for 8 days is accompanied by mediator accumulation in the cortex, caudate nucleus, tonsils, hypothalamus, thalamus, and midbrain with parallel reduction in 5-HIAA level in these structures. 15 days of lithium hydroxybutyrate administration lead to the increase of serotonin and 5-HIAA concentration, while 28 days of administration reduced the content of mediator and its metabolite.  相似文献   

8.
Abstract: The serotonin reuptake inhibitor fluoxetine significantly reduced levels of endogenous 5-hydroxyindoleacetic acid (5-HIAA) in brain perfusate of rats implanted with push-pull cannulas. This occurred in conjunction with its suppressant effect upon fixed-ratio operant behavior. Behavior suppressed with the serotonin agonist lysergic acid diethylamide (LSD) occurred in conjunction with a reduction of 5-HIAA only after 5-HIAA was elevated, shortly before, by 5 mg/kg of the serotonin precursor 5-hydroxytryptophan. Our data demonstrate the likely existence of multiple functional pools of serotonin in brain and support the notion that LSD preferentially affects a newly synthesized pool of this transmitter.  相似文献   

9.
Abstract— The concentration of dopamine (DA) and serotonin (5-HT) metabolites in brain regions was not altered by doses of ketamine (10mg/kg) which induced dissociative anesthesia in a primate species. Cercopithecus aethiops. Fluphenazine (1.0mg/kg) increased homovanillic acid (HVA) content in all brain regions examined. An increase in HVA and 5-hydroxyindoleacetic acid (5-HIAA) concentration was observed in cisternal CSF 4 h after ketamine without a concomitant change in the brain concentration of these metabolites.  相似文献   

10.
In this report, we describe an HPLC with electrochemical detection assay for the simultaneous measurement of levels of morphine, serotonin, 5-hydroxyindole-3-acetic acid, and homovanillic acid in dialysates of various brain areas and CSF in the awake rat. Morphine could be detected in the dialysates after a single intraperitoneal injection, with doses as low as 1.0 mg/kg. The time course of extracellular morphine content in the lateral hypothalamus, striatum, cerebellum, periaqueductal gray, and dorsal horn of the spinal cord and in CSF, from the ventricles and cisterna magna, was similar. We detected morphine in the first 15-min sample, and levels peaked 45-60 min after injection. Maximal dialysate levels, however, varied with the type of dialysis probe used and the area sampled. The most efficient in vivo recovery was in CSF dialysates from the cisterna magna, presumably because of minimal tissue interference with the dialysis probe. For this reason, the cisterna is an ideal region for sampling CSF. Morphine had no significant effect on the extracellular concentrations of serotonin in any of the areas studied and did not modify or only slightly increased levels of tissue metabolites; however, morphine markedly increased the CSF levels of 5-hydroxyindole-3-acetic acid and homovanillic acid. Because microdialysis in freely moving animals permits assessment of the behavioral effects of morphine while continuously monitoring the drug levels in discrete brain regions, this approach will greatly facilitate future studies of the neurochemical basis of morphine's effects in the brain.  相似文献   

11.
Portal-systemic encephalopathy (PSE) is characterized by a neuropsychiatric disorder progressing through personality changes, to stupor and coma. Previous studies have revealed alterations of serotonin and of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in brain tissue and CSF in experimental (rat) and human PSE. Increased brain 5-HIAA concentrations could result from its decreased removal rather than to increased serotonin metabolism. In order to evaluate this possibility, CSF 5-HIAA concentrations were measured using an indwelling cisterna magna catheter technique at various times following end-to-side portacaval anastomosis in rats (the most widely used animal model of PSE) treated with probenecid, a competitive inhibitor that blocks the active transport of acid metabolites out of the brain and CSF. Following portacaval anastomosis and probenecid treatment, CSF concentrations of 5-HIAA were increased to a greater extent than in sham-operated controls. When data were expressed as per-cent baseline values, the relative increase of CSF 5-HIAA in portacaval shunted rats following probenecid treatment was not significantly different from sham-operated controls. These findings confirm that increased 5-HIAA in the CNS in experimental PSE results from increased 5HT metabolism or turnover and that the probenecid-sensitive acid metabolite carrier is intact in PSE.  相似文献   

12.
Experimental acute liver ischemia in pigs induces an increment in plasma free tryptophan with decreased total tryptophan. Brain tryptophan is elevated in all brain areas. A slight, but significant increase of brain serotonin is demonstrated in the striatum only, while 5-HIAA (5-hydroxyindoleacetic acid) is significantly lower in the hypothalamus. Other brain areas do not show significant changes in serotonin and 5-HIAA levels. Neither the high plasma free tryptophan levels, nor the decreased sum of neutral competitive amino acids are consistent with such an elevation of brain tryptophan. Hemodialysis was carried out with two different kinds of membranes: cuprophan (with an efficient removal of molecules up to molecular weight 1300) and AN 69 polyacrylonitrile (efficient removal up to 15,000). Ammonia and aminoacid clearance are similar for both membranes. After AN 69, plasmatic free tryptophan and brain tryptophan are lower than after liver devascularization, but still higher than normal. Serotonin significantly increases in the cortex, midbrain and hypothalamus without concomitant rise of 5-HIAA levels. After cuprophan hemodialysis, plasma total tryptophan is lower than in normal and even comatose animals, whereas free tryptophan is normal. Intracerebral tryptophan is similar to AN 69 dialysed animals, but in the hypothalamus it is similar to nondialysed animals. Brain serotonin levels are not modified. 5-HIAA decreases in the hypothalamus. This finding suggests that middle molecules (which are not cleared out with cuprophan hemodialysis) are involved in the intracerebral transfer of tryptophan and the metabolism of serotonin, mainly in the hypothalamus.  相似文献   

13.
Central dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolism was monitored in conscious, freely moving rats by determination of levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in CSF samples withdrawn repeatedly from the cisterna magna and treated with acid to hydrolyse DOPAC and HVA conjugates. The effect of tyrosine on DA metabolism was investigated. Time courses of metabolite concentrations in individual rats in a quiet room showed that tyrosine (20, 50, or 200 mg/kg i.p.) was without significant effect; brain changes were essentially in agreement. However, the increases of CSF DOPAC and HVA levels that occurred on immobilisation for 2 h were further enhanced by tyrosine (200 mg/kg). The associated increases of 5-HIAA level were unaffected. The corresponding increases of DA metabolite concentrations in the brains of immobilised rats given tyrosine were less marked than the CSF changes and only reached significance for "rest of brain" DOPAC. The CSF studies revealed large interindividual variation in the magnitude and duration of the effects of immobilisation on transmitter amine metabolism. These results may help toward the elucidation of possible relationships between the neurochemical and behavioural effects of stress.  相似文献   

14.
Tetrahydrobiopterin, the hydroxylase cofactor (BH4) was administered (i.v. 20 mg/kg) to Rhesus monkeys. Within 90 min of its administration CSF cofactor levels increased significantly above baseline levels. Peak CSF levels were attained at 90–180 min time period following cofactor injection and returned to baseline gradually over the next 15 hrs. The increased brain cofactor levels had no apparent effect on synthesis of dopamine, norepinephrine or serotonin as evidenced by a lack of change in the levels of the metabolites homovalillic acid, 3-methoxy-4-hydroxyphenyleneglycol, and 5-hydroxyindoleacetic acid. The present resultsAbbreviations BH4 tetrahydrobiopterin - CSF cerebrospinal fluid - 5-HIAA 5-hydroxyindoleacetic acid - HAV homovanillic acid - MHPG 3-methoxy-4-hydroxyphenyleneglycol Supported by Dystonia Medical Research Foundation, 9615 Brighton Way, Suite 416, Beverly Hills, California 90210  相似文献   

15.
Cerebrospinal fluid (CSF) concentrations of the monoamine metabolites homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) are commonly used to provide information about central nervous system (CNS) dopaminergic and serotonergic activity. However, little attention has been given to the effects of sample handling on the concentrations of these compounds in human CSF. Using high-performance liquid chromatography (HPLC) with electrochemical detection, we observed that, in CSF stored at −80°C, concentrations of the serotonin metabolite 5-HIAA and the dopamine metabolite HVA remained unchanged through six 1-h and six 24-h freeze–thaw cycles. Exposure to bright room light (3 h, 1230 lux) resulted in a 5-HIAA concentration that was 96.3±2.0% of the initial and an HVA concentration that was 98.8±1.03% of initial. The pH of the CSF significantly increased during both freeze–thaw series and while maintained on ice (4°C). These results demonstrate the in-use stability of 5-HIAA and HVA in human CSF under commonly-encountered laboratory conditions.  相似文献   

16.
《Life sciences》1996,59(15):PL239-PL246
The effects of single (1mg/kg) and repeated (1mg/kg 21 daily for 4 days) diazepam administration are investigated on brain regional 5-hydroxytryptamine (5-HT; serotonin) and 5-hydroxy indoleacetic acid (5-HIAA) concentration in rats. Daily treatment decreased food intakes but body weights did not decrease. Administration of diazepam (1mg/kg) to 4 day sahne injected rats on the 5th day decreased 5-HT levels in the hippocampus and increased it in the hypothalamus. 5-HIAA levels were increased in the striatum and decreased in the hypothalamus. 4 day diazepam injected rats injected with sahne on the 5th day also exhibited silmilar changes of 5-HT and 5-HIAA. Cortical levels of 5-HIAA were also smaller in these rats. Administration of diazepam to 4 day diazepam injected rats again decreased 5-HT in the hippocampus and 5-HIAA in the hypothalamus. 5-HT and 5-HIAA were both decreased in the striatum. Regionally specific effects of diazepam on brain serotonin metabolism are discussed in relation to their possible functions.  相似文献   

17.
Brain and cerebrospinal fluid (CSF) levels of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were simultaneously measured in 48 individuals at autopsy. Concentrations of 5-HIAA and HVA in the cerebral cortex were positively correlated with their levels in the CSF for the same individual. Additionally a positive correlation was observed between postmortem CSF levels of 5-HIAA and HVA and a significant concentration gradient for both metabolites was observed in serial fractions of CSF. These findings suggest that determinations of 5-HIAA and HVA in CSF from living individuals may reflect brain metabolite levels as well as the functional activity of these specific neuronal systems.  相似文献   

18.
To assess maturation of central serotonin and catecholamine pathways at birth, we measured lumbar CSF homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), stable acid metabolites of dopamine and serotonin, using HPLC with electrochemical detection. CSFs from 57 neonates (38 premature and 19 at term) and 13 infants 1-6 months old were studied. HVA levels increased with maturity (p less than 0.05; ANOVA), whereas 5-HIAA levels were similar in all these subjects. HVA/5-HIAA ratios increased markedly from 1 +/- 0.12 in the most premature neonates to 1.98 +/- 0.17 in the older infants (p less than 0.01; t test). There were no sex differences for these values.  相似文献   

19.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

20.
Aluminum, a known neurotoxic substance, has been suggested as a possible contributing factor in the pathogenesis of Alzheimer's disease. Ground-water pollution by aluminum has been recently reported. In the current study groups of 5 male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 mg/L aluminum for 4 weeks. At the termination of aluminum exposure, their brains were removed and dissected into cerebrum, cerebellum, medulla oblongata, midbrain, corpus striatum, and hypothalamus. The concentration of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), were determined in each brain area. DA, DOPAC, and HVA levels were lower in the hypothalamus of aluminum-treated mice, most notably in the low-dose group, as compared with control. No marked alterations in NE, 5-HT, and 5-HIAA levels were detected in any brain region. Changes in the concentration of DA and its metabolites measured in the hypothalamus suggest an inhibition of DA synthesis by aluminum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号