首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了探讨出生后钾离子通道在下丘脑神经元热敏感分化过程中的作用,采用膜片钳技术研究出生一个月内SD大鼠急性分离神经元的温度效应,结果表明IK电流密度在出生后一个月内变化不大(P>0.05),而IA电流密度则呈现为升高趋势(P<0.05).同时升高温度,不同出生日期的钾通道NPo都有不同程度的升高,但相较P1d的神经元来说,温度对P18d的电压依赖性影响更大一些.同时温度对IK和IA的影响是不一样的,IA的Q10>2,所有这些显示IA通道在神经元温度敏感性的发育分化过程中起着重要的作用.  相似文献   

2.
利用多通道微电极阵列上培养的海马神经元网络,通过分析28~41℃范围内不同温度时网络自发放电频率.幅度和相邻峰电位时间间隔(interspike interval,ISI)的变化,探讨了温度对网络活动的影响。发现温度升高过程中放电频率、幅度呈不同程度增大的趋势,峰电位数目的变化程度随其间隔的增大呈减小趋势。结果表明体外培养的胎鼠海马神经元的网络活动具有温度敏感性。  相似文献   

3.
比较了不同季节和冬眠时相中达乌尔黄鼠 (Citelleusdauricus)下丘脑内去甲肾上腺素 (noradrenaline ,NA)代谢和视前区 (POA)脑片中各类温敏神经元的比例、温度敏感性、放电活动的临界温度及下限温度 .结果表明 :与夏季动物相比 ,( 1)冬眠各时相中POA温敏神经元的比例和温敏性产生了与冬眠体温调节特性相关的适应性改变 ;( 2 )冬季和冬眠中POA神经元放电的下限温度和温敏神经元活动的临界温度均显著下移 ;( 3 )冬眠中POA神经元对NA反应的敏感性增高 ,冷敏神经元对NA的反应从夏季的抑制型转变为冬眠时的兴奋型 ;( 4)入眠和深冬眠时下丘脑内NA的含量和代谢水平下降 ,出眠时代谢水平升高 .这些变化可能解释动物入眠时主动降低体温和出眠时从深低体温中快速地升温的温度调节机理 .  相似文献   

4.
目的:研究小鼠生后发育过程中运动皮层锥体神经元电生理特性的变化。方法:选取出生后不同发育阶段的小鼠共计36只,随机分为1、2、3周龄组(1-, 2-, 3-Week)、1、2、3月龄组(1-, 2-, 3-Month)(n=6)。应用全细胞膜片钳及生物胞素细胞内标记技术区分锥体神经元与中间神经元,同时记录各组小鼠脑片运动皮层锥体神经元的被动膜特性、动作电位(AP)及兴奋性突触后电流(sEPSCs)。结果:与中间神经元相比,小鼠运动皮层锥体神经元的AP放电特征表现为规则放电(RS),放电频率较为缓慢。小鼠运动皮层锥体神经元的被动膜特性在出生后发育期间表现为:与1周龄组小鼠相比,2周龄组的静息膜电位(RMP)表现为显著超极化(P<0.01),2周后再无明显改变;1月龄组的膜输入阻抗(Rin)呈现显著下降的趋势(P<0.01),在1月龄后无明显变化;膜电容(Cm)无明显变化。AP在发育早期的变化表现为:与1周龄组小鼠相比,3周龄组AP阈电位绝对值和幅值显著增加(P<0.01),2周龄组AP半波宽显著降低(P<0.05),在此之后无显著变化。sEP...  相似文献   

5.
Yao XH  Xiong Y 《生理学报》2005,57(3):333-339
本实验采用脑片膜片钳全细胞记录和生物胞素(biocytin)组化染色相结合的技术,研究出生后(postnatalday,P)3~30日龄大鼠(P3~30)内侧膝状体腹侧部(ventralpartitionofmedialgeniculatebody,MGBv)神经元的电生理和形态学特性的发育变化。结果显示:(1)在P3~30的发育过程中,MGBv神经元的静息膜电位自?40mV降至?67mV(P<0.01);输入阻抗由1832M?降至806M?(P<0.01);时间常数由2.55ms降至0.96ms(P<0.01)。同时,动作电位的幅度、阈值和时程也表现出显著差异(P<0.01);(2)K+通道阻断剂4-AP使P6的MGBv神经元诱发动作电位数目减少,幅度降低,时程变宽,并使P16的动作电位幅度逐渐降低至去极化脉冲终末达到平台电位,而Ca2+通道阻断剂CdCl2仅引起P16的MGBv神经元动作电位的幅度降低,时程延长;(3)在用biocytin标记的MGBv神经元观察到,幼稚MGBv蓬丛样神经元(tuftedneuron)胞体呈圆形或椭圆形,而随着出生后日龄的增长,胞体逐渐变成梭形。轴突出现较早,树突的发育相对较晚,但其发育变化更为显著和复杂。以上结果提示,大鼠出生后MGBv神经元电生理和形态学特性仍有显著的发育变化,且两者明显相关。  相似文献   

6.
采用膜片钳细胞贴附式技术,比较研究SD大鼠下丘脑神经元电压依赖性钾通道(voltage-dependent potassium channel,Kv)单通道电流活动的动力学特性,在出生后发育过程中的变化。出生不同天数的大鼠,其下丘脑神经元上Kv通道的电流强度和电导无显著差别(P>0.05),通道电导接近120 pS;单位时间内封接膜片上N个通道的开放概率的总和升高,由第1天的0.19±0.08(n=10)上升到第9天的0.30±0.09(n=10,P<0.05),单通道活动密度增加,由0.14 channel/μm2升高至0.26 channel/μm2。上述结果提示大鼠下丘脑神经元在出生发育过程中,Kv单通道活动的动力学发生显著变化。  相似文献   

7.
本研究旨在探讨α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体参与的出生后大鼠海马发育早期的电生理学特点。选择出生后0.5月龄、1月龄、2月龄和3月龄Wistar大鼠共计48只(每组各12只)。应用全细胞膜片钳技术及MED64平面微电极阵列技术检测海马CA1区锥体神经元的被动膜特性及AMPA受体参与的自发兴奋性突触后电流(spontaneous exctitatory postsynaptic current,sEPSC)和场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)。结果显示,海马CA1区锥体神经元在出生后0.5~3月龄期间,在被动膜特性方面表现为:膜电容与静息膜电位无显著性变化;膜输入电阻与时间常数均显著下降。在主动膜特性方面,呈现出阶段性变化:0.5~1月龄期间,s EPSC的反应表现为:振幅显著升高,频率明显增大,上升时间及下降时间显著增加;1~3月龄期间,sEPSC的反应特性与0.5~1月龄期间相反。此外,0.5~3月龄期间,海马CA1区诱发出的f EPSP范围明显扩大,而幅值显著减小;各月龄海马CA1区诱发出的fEPSP幅值均可被AMPA受体竞争性拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)明显降低。以上结果提示,在出生后大鼠海马发育早期过程中,AMPA受体作为调节突触传递和突触联系的主要兴奋性受体,可以促进海马的发育及功能成熟。  相似文献   

8.
目的:研究碱中毒对小鼠皮质GABA能神经元内在特性和编码能力的影响,探讨碱中毒引起大脑功能障碍的机制。方法:选择17-22天FVB-Tg小鼠行脑片体外培养,实验对象分为碱中毒组和对照组。DIC光学显微镜下选择皮层II-III层GABA神经元,运用Axo Patch 200 B放大器全细胞模式,记录并分析神经元内在特性(包括阈电位、绝对不应期)的改变;记录与去极化脉冲相对应的峰值,分析GABA能神经元的编码能力。结果:1.阈电位峰值在对照组分别是24.58±0.68,25.44±0.82,27.02±0.78,27.55±0.74和28.66±0.79毫伏,碱中毒组分别是28.32±0.78,30.10±0.91,32.22±0.80,32.88±0.76和33.54±0.74毫伏,碱中毒组阈电位升高;绝对不应期在对照组和碱中毒组分别是4.15±0.06和5.09±0.08毫秒,碱中毒绝对不应期延长。2.两组在相同去极化刺激下诱发的连续峰值波形发生明显改变,碱中毒组产生峰值的能力下降。结论:1、碱中毒使皮质GABA能神经元动阈电位升高和绝对不应期延长;2、碱中毒降低皮质GABA能神经元编码峰值能力。  相似文献   

9.
谷氨酸对原代培养海马神经元的兴奋特性   总被引:2,自引:0,他引:2  
目的:探索谷氨酸对培养大鼠海马神经元的兴奋特性.方法:分离及培养1日龄SD大鼠海马神经元,第9~15 d用膜片钳检测不同浓度谷氨酸对神经元兴奋特性,包括细胞膜电位、去极化/动作电位的影响.结果:谷氨酸降低海马神经元静息膜电位,诱发去极化/动作电位,高浓度谷氨酸处理组神经元的静息膜电位比低浓度组降低显著;100μmol/L谷氨酸长时间处理组的神经细胞膜电位显著低于短时间处理组.结论:谷氨酸对海马神经元兴奋性有浓度和时间依赖性.  相似文献   

10.
本实验用免疫细胞化学技术观察了不同年龄金黄地鼠视皮层和上丘中P物质(SP)阳性神经元数量和分布的变化,同时观察了不同年龄金黄地鼠视皮层SP阳性神经元的形态和类型。结果表明,出生后10天小鼠视皮层SP阳性神经元为36%,Ⅱ—Ⅳ层密度最大,约占40%。上丘中SP阳性神经元约为37%。出生后20天,视皮层及上丘中SP阳性神经元分别减少到23%和16%。视皮层Ⅱ—Ⅳ层减少最明显,Ⅴ层和Ⅵ层变化不大。成年鼠视皮层及上丘中偶见SP神经元,但出现一些SP阳性纤维。出生10天及20天鼠视皮层中SP阳性神经元的形态及类型没有差别。  相似文献   

11.
Regulation of orexin neurons by the monoaminergic and cholinergic systems   总被引:7,自引:0,他引:7  
Orexins are a pair of neuropeptides implicated in energy homeostasis and arousal. Here we characterize the electrophysiological properties of orexin neurons using slice preparations from transgenic mice in which orexin neurons specifically express green fluorescent protein. Orexin neurons showed high frequency firing with little adaptation by injecting a positive current. The hyperpolarization-activated current was observed in orexin neurons by a negative current injection. The neurotransmitters, which were implicated in sleep/wake regulation, affected the activity of orexin neurons; noradrenaline and serotonin hyperpolarized, while carbachol depolarized orexin neurons in either the presence or absence of tetrodotoxin. It has been reported that orexins directly or indirectly activate the nuclei that are the origin of the neurons containing these neurotransmitters. Our data suggest that orexin neurons have reciprocal neural circuitries between these nuclei for either a positive or negative feedback loop and orchestrate the activity of these neurons to regulate the vigilance states.  相似文献   

12.
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons'' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission.  相似文献   

13.
Endogenously secreted or injected corticosterone (CORT) rapidly suppresses courtship clasping in male roughskin newts (Taricha granulosa) by an action on a specific neuronal membrane receptor. Previous studies, using immobilized newts, showed that CORT administration rapidly depresses excitability of reticulospinal neurons and attenuates medullary neuronal responsiveness to clasp-triggering sensory stimuli. The present study used freely moving newts to examine clasping responses and concurrently record sensorimotor properties of 67 antidromically identified reticulospinal and other medullary reticular neurons before and after CORT injection. Before CORT, reticulospinal neurons fired in close association with onset and offset of clasps elicited by cloacal pressure. Reticulospinal neurons also showed firing correlates of nonclasping motor events, especially locomotion. Neuronal activity was typically reduced during clasping and elevated during locomotion. Medullary neurons that were not antidromically invaded (unidentified neurons) usually showed sensorimotor properties that resembled those of reticulospinal neurons. Intraperitoneal CORT (but not vehicle) reduced the probability and quality of hindlimb clasping in response to cloacal pressure, especially within 5–25 min of injection. Simultaneously, responses of reticulospinal and unidentified neurons to cloacal pressure and occurrence of clasping-related activity were attenuated or eliminated. CORT effects were relatively selective, altering clasping-related neuronal activity more strongly than activity associated with nonclasping motor events. The properties of CORT effects indicate that the hormone impairs clasping by depressing processing of clasp-triggering afferent activity and by disrupting the medullary control of clasping normally mediated by reticulospinal neurons. The rapid onset of these CORT effects implicates a neuronal membrane receptor rather than genomic action of the steroid.  相似文献   

14.
The locus coeruleus (LC)-norepinephrine (NE) system in the brainstem plays a critical role in a variety of behaviors is an important target of pharmacological intervention to several neurological disorders. Although GABA is the major inhibitory neurotransmitter of LC neurons, the modulation of LC neuronal firing activity by local GABAergic interneurons remains poorly understood with respect to their precise location, intrinsic membrane properties and synaptic modulation. Here, we took an optogenetic approach to address these questions. Channelrhodopsin (ChR2) in a tandem with the yellow fluorescent protein (YFP) was expressed in GABAergic neurons under the control of glutamic acid decarboxylase 2 (GAD2) promoter. Immediately dorsomedial to the LC nucleus, a group of GABAergic neurons was observed. They had small soma and were densely packed in a small area, which we named the dorsomedial LC or dmLC nucleus. These GABAergic neurons showed fast firing activity, strong inward rectification and spike frequency adaptation. Lateral inhibition among these GABAergic neurons was observed. Optostimulation of the dmLC area drastically inhibited LC neuronal firing frequency, expanded the spike intervals, and reset their pacemaking activity. Analysis of the light evoked inhibitory postsynaptic currents (IPSCs) indicated that they were monosynaptic. Such light evoked IPSCs were not seen in slices where this group of GABAergic neurons was absent. Thus, an isolated group of GABAergic neurons is demonstrated in the LC area, whose location, somatic morphology and intrinsic membrane properties are clearly distinguishable from adjacent LC neurons. They interact with each and may inhibit LC neurons as well as a part of local neuronal circuitry in the LC.  相似文献   

15.
Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour.  相似文献   

16.
Peña F  Parkis MA  Tryba AK  Ramirez JM 《Neuron》2004,43(1):105-117
Pacemaker neurons have been described in most neural networks. However, whether such neurons are essential for generating an activity pattern in a given preparation remains mostly unknown. Here, we show that in the mammalian respiratory network two types of pacemaker neurons exist. Differential blockade of these neurons indicates that their relative contribution to respiratory rhythm generation changes during the transition from normoxia to hypoxia. During hypoxia, blockade of neurons with sodium-dependent bursting properties abolishes respiratory rhythm generation, while in normoxia respiratory rhythm generation only ceases upon pharmacological blockade of neurons with heterogeneous bursting properties. We propose that respiratory rhythm generation in normoxia depends on a heterogeneous population of pacemaker neurons, while during hypoxia the respiratory rhythm is driven by only one type of pacemaker.  相似文献   

17.
Cells derived from the neonatal rat pineal gland were cocultured with cells derived from neonatal rat superior cervical ganglia (SCG) in an attempt to determine whether a sympathetic target organ with only adrenergic properties could enhance the development of adrenergic transmitter properties in sympathetic neurons in tissue culture. Choline acetyltransferase was measured as an index of cholinergic differentiation, and tyrosine hydroxylase was measured as an index of adrenergic differentiation. As indices of total cell number and cellular volume, DNA and protein, respectively, were also measured. We found that the pineal-SCG cocultures contained ten times greater choline acetyltransferase activity than sister neuronal cultures cultured without pineal cells, thus indicating that the pineal cells enhanced cholinergic properties in the sympathetic neurons. This cholinergic enhancement was dependent upon the presence of nerve growth factor and could not be obtained with pineal-conditioned medium. Tyrosine hydroxylase activity, measured on cultures sister to those mentioned above, was low in all cultures and decreased somewhat in SCGs cultured alone. TH activity in the pineal-SCG cocultures, however, increased slightly. Some tyrosine hydroxylating activity developed in pineals cultured alone, however, and may have been responsible for the small increase in tyrosine hydroxylase activity noted in the pineal-SCG cocultures. The implications of these results for a determination of the role that target organ plays in the development of the transmitter properties of sympathetic neurons are discussed.  相似文献   

18.
The goal of the present study was to investigate the local synchronized neuronal activity in the cat visual cortex and the role of different classes of neurons in neural synchrony. Four classes of neurons were identified on the basis of electrophysiological properties of extracellularly recorded cells: RS, FS, IB, and FRB. It was revealed that neurons with short spikes and FRB type of activity were first engaged in synchronization. The model study revealed that neurons with the short action potential had more stable synchronized activity.  相似文献   

19.
Extracellular recordings in primates have identified two types of neurons in the external segment of the globus pallidus (GPe): high frequency pausers (HFP) and low frequency bursters (LFB). The aim of the current study was to test whether the properties of HFP and LFB neurons recorded extracellularly in the primate GPe are linked to cellular mechanisms underlying the generation of action potential (AP) firing. Thus, we recorded from primate and rat globus pallidus neurons. Extracellular recordings in primates revealed that in addition to differences in firing patterns the APs of neurons in these two groups have different widths (APex). To quantitatively investigate this difference and to explore the heterogeneity of pallidal neurons we carried out cell-attached and whole-cell recordings from acute slices of the rat globus pallidus (GP, the rodent homolog of the primate GPe), examining both spontaneous and evoked activity. Several parameters related to the extracellular activity were extracted in order to subdivide the population of recorded GP neurons into groups. Statistical analysis showed that the GP neurons in the rodents may be differentiated along six cellular parameters into three subgroups. Combining two of these groups allowed a better separation of the population along nine parameters. Four of these parameters (Fmax, APamp, APhw, and AHPs amplitude) form a subset, suggesting that one group of neurons may generate APs at significantly higher frequencies than the other group. This may suggest that the differences between the HFP and LFB neurons in the primate are related to fundamental underlying differences in their cellular properties.  相似文献   

20.
Using intra- and extracellular recording techniques we examined the spontaneous discharge and membrane properties of respiratory-related neurons in isolated brainstem preparations of the frogs Rana catesbeiana and Rana pipiens that display spontaneous respiratory related activity in vitro. We observed neurons that depolarize during the fictive lung ventilation cycle as well as neurons that depolarize during the non-lung ventilation phase. Respiratory-related neurons demonstrated significant decreases in membrane input resistance during the fictive lung ventilation cycle but showed no evidence of voltage-dependent membrane conductances activated near resting membrane potential. Furthermore, respiratory neurons showed little spike frequency adaptation, their oscillatory activity was not dissociated from the global respiratory motor output following imposed changes in membrane potential, and spontaneous fluctuations in membrane potential were not observed following reversible interruption of respiratory burst activity by application of solutions low in calcium and high in magnesium. Taken together these results suggest that bulbar respiratory neurons in the isolated frog brainstem sampled in our study do not display endogenous bursting characteristics. Rather, they are strongly influenced by synaptic input. Accepted: 20 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号