首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

2.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

3.
Glucose tolerance declines with maturation and aging in several species, but the time of onset and extent of changes in insulin sensitivity and insulin secretion and their contribution to changes in glucose tolerance are unclear. We therefore determined the effect of maturation on glucose tolerance, insulin secretion, and insulin sensitivity in a longitudinal study of male and female sheep from preweaning to adulthood, and whether these measures were related across age. Glucose tolerance was assessed by intravenous glucose tolerance test (IVGTT, 0.25 g glucose/kg), insulin secretion as the integrated insulin concentration during IVGTT, and insulin sensitivity by hyperinsulinemic-euglycemic clamp (2 mU insulin.kg(-1).min(-1)). Glucose tolerance, relative insulin secretion, and insulin sensitivity each decreased with age (P < 0.001). The disposition index, the product of insulin sensitivity, and various measures of insulin secretion during fasting or IVGTT also decreased with age (P < 0.001). Glucose tolerance in young adult sheep was independently predicted by insulin sensitivity (P = 0.012) and by insulin secretion relative to integrated glucose during IVGTT (P = 0.005). Relative insulin secretion before weaning was correlated positively with that in the adult (P = 0.023), whereas glucose tolerance, insulin sensitivity, and disposition indexes in the adult did not correlate with those at earlier ages. We conclude that glucose tolerance declines between the first month of life and early adulthood in the sheep, reflecting decreasing insulin sensitivity and absence of compensatory insulin secretion. Nevertheless, the capacity for insulin secretion in the adult reflects that early in life, suggesting that it is determined genetically or by persistent influences of the perinatal environment.  相似文献   

4.
To investigate whether correction of fasting hyperglycemia per se improves the insulin secretion in type 2 diabetic subjects, plasma insulin response to 75 g oral glucose load has been studied after acute and chronic normalization of fasting plasma glucose levels in 7 overt type 2 diabetic subjects. For the acute normalization of elevated fasting plasma glucose levels, an artificial endocrine pancreas was employed. Although fasting plasma glucose concentrations were normalized before the oral glucose challenge, insulin response to oral glucose was not improved compared to those without normalization of fasting plasma glucose levels. After 1-3 month control of hyperglycemia, the insulin response to glucose in the subjects was significantly improved compared to those without treatments. Results indicate that chronic metabolic control is essential for the improvement of insulin response to glucose in type 2 diabetic subjects, and also suggest that the impaired insulin secretion in type 2 diabetes is not due to hyperglycemia per se, but due to the metabolic derangements which lead to chronic hyperglycemia.  相似文献   

5.
The pancreas releases insulin in a pulsatile manner; however, studies assessing the liver's response to insulin have used constant infusion rates. Our aims were to determine whether the secretion pattern of insulin [continuous (CON) vs. pulsatile] in the presence of hyperglycemia 1) influences net hepatic glucose uptake (NHGU) and 2) entrains NHGU. Chronically catheterized conscious dogs fasted for 42 h received infusions including peripheral somatostatin, portal insulin (0.25 mU x kg(-1) x min(-1)), peripheral glucagon (0.9 ng x kg(-1) x min(-1)), and peripheral glucose at a rate double the glucose load to the liver. After the basal period, insulin was infused for 210 min at either four times the basal rate (1 mU x kg(-1) x min(-1)) or an identical amount in pulses of 1 and 4 min duration, followed by intervals of 11 and 8 min (CON, 1/11, and 4/8, respectively) in which insulin was not infused. A variable peripheral glucose infusion containing [3H]glucose clamped glucose levels at twice the basal level ( approximately 200 mg/dl) throughout each study. Hepatic metabolism was assessed by combining tracer and arteriovenous difference techniques. Arterial plasma insulin (microU/ml) either increased from basal levels of 6 +/- 1 to a constant level of 22 +/- 4 in CON or oscillated from 5 +/- 1 to 416 +/- 79 and from 6 +/- 1 to 123 +/- 43 in 1/11 and 4/8, respectively. NHGU (-0.8 +/- 0.3, 0.4 +/- 0.2, and -0.9 +/- 0.4 mg x kg(-1) x min(-1)) and net hepatic fractional extraction of glucose (0.04 +/- 0.01, 0.04 +/- 0.01, and 0.05 +/- 0.01 mg x kg(-1) x min(-1)) were similar during the experimental period. Spectral analysis was performed to assess whether a correlation existed between the insulin secretion pattern and NHGU. NHGU was not augmented by pulsatile insulin delivery, and there is no evidence of entrainment in hepatic glucose metabolism. Thus the loss of insulin pulsatility per se likely has little or no impact on the effectiveness of insulin in regulating liver glucose uptake.  相似文献   

6.
The hypothesis that prepubertal ewe lambs are metabolically different from postpubertal ewes was tested. Ovariectomized ewes (4 years of age; n = 4) and lambs (6 months of age; n = 4) were fasted for 72 hr. Serum concentrations of insulin, glucose, urea nitrogen, and free fatty acids (FFA) were measured in blood samples taken at 6-hr intervals between 30 hr before and 72 hr after feed removal. Serum concentrations of urea nitrogen and glucose were not different (P greater than 0.20) between age groups before fasting. Serum concentrations of insulin in ewes increased toward the end of the prefast period whereas those in lambs did not (age x time, P less than 0.01). Serum concentrations of FFA in ewes tended to be lower (P less than 0.07) than those in lambs prior to fasting. During fasting, concentrations of insulin decreased (P less than 0.02) over time in ewes and lambs and did so in a similar manner (age x time, P greater than 0.70). Urea nitrogen increased (P less than 0.0001) in both fasted ewes and fasted lambs in a comparable manner (age x time, P greater than 0.20). Concentrations of glucose during fasting were not significantly affected (P greater than 0.90) by age. There was a tendency (P = 0.08) for concentrations of glucose to change over time but the pattern did not appear to be related to fasting. During fasting, concentrations of FFA tended to be higher (P less than 0.07) in lambs than in ewes and increased (P less than 0.0001) in both groups in a similar fashion (age x time, P greater than 0.10). The findings herein suggest that turnover of FFA in lambs may be slightly greater than that in ewes during the fed and fasted states.  相似文献   

7.
Under fasting conditions, the cAMP-responsive CREB coactivator TORC2 promotes glucose homeostasis by stimulating the gluconeogenic program in liver. Following its nuclear translocation in response to elevations in circulating glucagon, TORC2 regulates hepatic gene expression via an association with CREB on relevant promoters. Here, we show that, in parallel with their effects on glucose output, CREB and TORC2 also enhance insulin signaling in liver by stimulating expression of the insulin receptor substrate 2 (IRS2) gene. The induction of hepatic IRS2 during fasting appears critical for glucose homeostasis; knockdown of hepatic IRS2 expression leads to glucose intolerance, whereas hepatic IRS2 overexpression attenuates the gluconeogenic program and reduces fasting glucose levels. By stimulating the expression of IRS2 in conjunction with gluconeogenic genes, the CREB:TORC2 pathway thus triggers a feedback response that limits glucose output from the liver during fasting.  相似文献   

8.
Altered fat distribution is associated with insulin resistance in HIV, but little is known about regional glucose metabolism in fat and muscle depots in this patient population. The aim of the present study was to quantify regional fat, muscle, and whole body glucose disposal in HIV-infected men with lipoatrophy. Whole body glucose disposal was determined by hyperinsulinemic clamp technique (80 mU x m(-2) x min(-1)) in 6 HIV-infected men and 5 age/weight-matched healthy volunteers. Regional glucose uptake in muscle and subcutaneous (SAT) and visceral adipose tissue (VAT) was quantified in fasting and insulin-stimulated states using 2-deoxy-[18F]fluoro-D-glucose positron emission tomography. HIV-infected subjects with lipoatrophy had significantly increased glucose uptake into SAT (3.8 +/- 0.4 vs. 2.3 +/- 0.5 micromol x kg tissue(-1) x min(-1), P < 0.05) in the fasted state. Glucose uptake into VAT did not differ between groups. VAT area was inversely related with whole body glucose disposal, insulin sensitivity, and muscle glucose uptake during insulin stimulation. VAT area was highly predictive of whole body glucose disposal (r2 = 0.94, P < 0.0001). This may be mediated by adiponectin, which was significantly associated with VAT area (r = -0.75, P = 0.008), and whole body glucose disposal (r = 0.80, P = 0.003). This is the first study to directly demonstrate increased glucose uptake in subcutaneous fat of lipoatrophic patients, which may partially compensate for loss of SAT. Furthermore, we demonstrate a clear relationship between VAT and glucose metabolism in multiple fat and muscle depots, suggesting the critical importance of this depot in the regulation of glucose and highlighting the significant potential role of adiponectin in this process.  相似文献   

9.
In previous studies we have shown that when endurance athletes refrain from daily exercise for three days, they rapidly loose their enhanced insulin sensitivity. This finding suggests that a precompetitive high carbohydrate diet with reduced training might alter plasma glucose and insulin regulation. To test this hypothesis, six long distance runners were recruited to participate in a five-day experiment. During the first two days, the subjects fasted while running 16 km d-1. Thereafter, they consumed 16.3 MJ (3900 kcal) and 539 g carbohydrate per day for three days while remaining inactive. Before and after each portion of this experiment, an intravenous glucose tolerance test (IVGTT) was performed in fasting state. As expected, fasting with exercise induced a considerable deterioration of glucose tolerance, as reflected by lower K value and higher total area glucose during IVGTT. The high carbohydrate refeeding restored glucose tolerance to a level comparable to that observed when subjects maintain their usual life habits. However, while a decrease in insulin sensitivity is observed in subjects inactive for three days, the insulin sparing effect of exercise training is retained if this period of inactivity is preceded by two days of fast accompanied by exercise. These results show that glucose disposal and insulin response to glucose injection are not adversely modified by the precompetitive "glycogen loading" procedure.  相似文献   

10.
B Metzger  S Pek  J Hare  N Freinkel 《Life sciences》1974,15(2):301-308
Plasma glucose, insulin and glucagon were measured in pregnant and age-matched virgin rats in the fed state and after fasting 6, 48 or 120 hours during day 16–21 of gestation. The fed state in pregnancy was characterized by a metabolic setting favoring anabolism. The lower plasma glucose in the fed pregnant rats was associated with higher insulin, slightly lower glucagon and higher insulin/glucose and insulin/glucagon ratios than in virgin rats. During fasting, glucose fell to sustained hypoglycemic levels in the pregnant animals whereas glucose declined but did not achieve hypoglycemia at any point in the virgins. Despite the hypoglycemia, greater levels of plasma insulin persisted in the pregnant throughout the 120 hours of fasting and insulin/glucagon ratios did not differ significantly from the euglycemic virgins. Thus, “accelerated starvation” in pregnancy cannot be ascribed to relative glucagon excess. Rather, the preservation of normal insulin/glucagon ratios despite prevailing hypoglycemia, may provide a mechanism during fasting in pregnancy for restraining maternal protein catabolism in the face of the added fuel demands of the conceptus.  相似文献   

11.
Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-h blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean (s.d.) age 41 (5) years; BMI 27.4 (2.0) kg/m(2)) completed two 14-day treatments with hypocaloric diet and 8.5- or 5.5-h nighttime sleep opportunity in random order 7 (3) months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free fatty acids (FFA), 24-h blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 (0.3) BMI units) during each treatment. Bedtime restriction reduced sleep by 131 (30) min/day. Recurrent sleep curtailment decreased 24-h serum insulin concentrations (i.e., enhanced 24-h insulin economy) without changes in oral glucose tolerance and 24-h glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA, which suppressed normally following glucose ingestion, and lower total and low-density lipoprotein cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-h insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability.  相似文献   

12.
Plasma insulin and glucose levels were simultaneously determined in 60 fasting raptors (seven species) which had experienced mild or severe stress: prolonged confinement in flight cages (Type A), and serious debilities such as fractured bones, soft-tissue damage and/or starvation (Type B) respectively. Two of the species contained Types A and B (43 birds) while the remaining five species (17 birds) were of Type B only. Wide ranges in plasma insulin (0-135 pg/ml or 0-3.0 microU/ml) were observed in both Types A and B. Mean levels were not significantly different between species, although levels in Type B tended to be lower than those in Type A. Wide ranges in plasma glucose (195-485 mg/dl) were also observed in Types A and B but mean levels between species were remarkably similar, and likewise were not significantly different. However, even though mean insulin and glucose levels did not differ significantly between mildly or severely stressed and fasting birds, a low-level but significant (P less than 0.001) correlation (r = 0.5772) between insulin and glucose levels existed. This suggests that insulin contributes minimally, but significantly, to regulation of plasma glucose levels during stressful experiences or the fasting state.  相似文献   

13.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

14.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

15.
Zinc improves both insulin secretion and insulin sensitivity, and exerts insulin-like effects. We investigated its acute effects on the parameters of glucose assimilation determined with the minimal model technique from frequent sampling intravenous glucose tolerance test (FSIVGTT) in seven healthy volunteers. FSIVGTTs (0.5 g/kg of glucose, followed by 2 U insulin iv injection at 19 min) were performed after the subjects had taken 20 mg zinc gluconate twice (the evening before and 30 min before the beginning of the test) or placebo pills (simple blind randomized protocol). Glucose assimilation was analyzed by calculating Kg (slope of the exponential decrease in glycemia), glucose effectiveness Sg (i.e., ability of glucose itself to increase its own disposal independent of insulin response), and SI (insulin sensitivity, i.e. the effect of increases in insulinemia on glucose disposal). The two latter parameters were calculated by fitting the experimental data with the two equations of Bergman’s “minimal model”. Zinc increased Kg (p<0.05) and Sg (p<0.05), whereas SI and insulin first-phase secretion did not significantly increase. This study suggests that zinc improves glucose assimilation, as evidenced by the increase in Kg, and that this improvement results mainly from an increase in glucose effectiveness (insulin-like effect), rather than an action on insulin response or insulin sensitivity.  相似文献   

16.
Enhancement of beta-cell sensitivity to glucose by oral fat load.   总被引:1,自引:0,他引:1  
Recent studies have demonstrated that 6 h infusions of lipid emulsion enhance insulin release, whereas 24 h infusions inhibit insulin secretion. How insulin release is modulated after oral fat loading has not yet been elucidated. 17 healthy fasting volunteers were subjected to 3 experiments in random order: test 1 was a frequently sampled i. v. glucose tolerance test (FSIVGTT, 0.3 g/kg glucose), test 2 began with the ingestion of 50 % sunflower oil (1.5 g/kg) followed by FSIVGTT 4 h later. Test 3 was identical to test 2 with i. v. addition of 100 U/kg heparin prior to FSIVGTT. Glucose and insulin data were analyzed by minimal model assumptions - glucose sensitivity of the beta-cells (Theta1), acute insulin response (AIR) (10 min), 3 h insulin release (Theta2), glucose threshold of insulin secretion (h), insulin degradation rate (n), peripheral insulin sensitivity (S(I)), and glucose-dependent glucose disposal (S(G)). After drinking the fat emulsion, FFAs increased to 0.8 +/- 0.3 mmol/l (test 2) and to 3.0 +/- 0.3 mmol/l (test 3). Moderately increased FFA concentrations were associated with elevation of Theta1 (test 1, control 335 +/- 157 vs. test 2: 859 +/- 612 pM x min x mM(-1), p = 0.030). At high plasma FFA levels and in the presence of heparin (test 3), Theta1 was reduced compared to test 2 and unchanged compared to test 1. Theta2 and h were elevated in both tests 2 and 3 compared to test 1. No changes of n, S(I) and S(G) were found. In conclusion, the ingestion of sunflower oil triglyceride emulsion resulted in a 60 % increase in plasma free fatty acids and enhanced the capacity of beta-cells to secrete insulin. Heparin-induced high levels of FFA further augmented the total insulin release and inhibited parameters of glucose responsiveness.  相似文献   

17.
Glucose tolerance declines with age, resulting in a high prevalence of diabetes and impaired glucose tolerance (IGT) in the older population. Hyperglycemia per se can lead to impaired beta-cell function (glucose toxicity). We tested the role of glucose toxicity in age-related beta-cell dysfunction in older people (65 +/- 8 yr) with IGT treated with the alpha-glucosidase inhibitor acarbose (n = 14) or placebo (n = 13) for 6 wk in a randomized, double-blind study. Baseline and posttreatment studies included 1) an oral glucose tolerance test (OGTT), 2) 1-h postprandial glucose monitoring, 3) a frequently sampled intravenous glucose tolerance test (insulin sensitivity, or S(I)), and 4) glucose ramp clamp (insulin secretion rates, or ISR), in which a variable glucose infusion increases plasma glucose from 5 to 10 mM. The treatment groups had similar baseline body mass index; fasting, 2-h OGTT, and 1-h postprandial glucose levels; and S(I). In these carefully matched older people with IGT, both fasting (5.7 +/- 0.2 vs. 6.3 +/- 0.2 mM, P = 0.002) and 1-h postprandial glucose levels (6.9 +/- 0.3 vs. 8.2 +/- 0.4 mM, P = 0.02) were significantly lower in the acarbose than in the placebo group. Despite this reduction of chronic hyperglycemia in the acarbose vs. placebo group, measures of insulin secretion (ISR area under the curve: 728 +/- 55 vs. 835 +/- 81 pmol/kg, P = 0.9) and acute insulin response to intravenous glucose (329 +/- 67 vs. 301 +/- 54 pM, P = 0.4) remained unchanged and impaired. Thus short-term improvement of chronic hyperglycemia does not reverse beta-cell dysfunction in older people with IGT.  相似文献   

18.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

19.
The effects of insulin deficiency on pancreatic A cell responsiveness to glucose was studied in subtotally depancreatized geese. In geese operated for 3 to 5 days and receiving insulin therapy (I.M.: 0.5-1.0 U/kg/24 h), A cell response to glucose (I.V. injection: 0.5 g/kg) was abolished, but could be restored to normal range by insulin (I.V. injection: 0.025-0.2 U/kg) together with glucose. After 5 weeks of therapy, A cell sensitivity declined: the physiological amount of insulin (0.025 U/kg) was insufficient to suppress glucagon during the glucose load, whereas the large dose (0.2 U/kg) partially restored A cell response. In addition, daily insulin treatment prevented a severe increase of fasting plasma glucose and glucagon. Geese receiving no insulin therapy showed "total blindness" to glucose, even when given insulin at the time of the test. These data suggest a progressive loss of sensitivity of the A cell to insulin. Endocrine and/or panacrine insulin deficiency may play a role on the dysfuncion of the glucose-glucagon feedback mechanism.  相似文献   

20.
The traditional methods for the assessment of insulin sensitivity yield only a single index, not the whole dose-response curve information. This curve is typically characterized by a maximally insulin-stimulated glucose clearance (Cl(max)) and an insulin concentration at half-maximal response (EC(50)). We developed an approach for estimating the whole dose-response curve with a single in vivo test, based on the use of tracer glucose and exogenous insulin administration (two steps of 20 and 200 mU x min(-1) x m(-2), 100 min each). The effect of insulin on plasma glucose clearance was calculated from non-steady-state data by use of a circulatory model of glucose kinetics and a model of insulin action in which glucose clearance is represented as a Michaelis-Menten function of insulin concentration with a delay (t(1/2)). In seven nondiabetic subjects, the model predicted adequately the tracer concentration: the model residuals were unbiased, and their coefficient of variation was similar to the expected measurement error (approximately 3%), indicating that the model did not introduce significant systematic errors. Lean (n = 4) and obese (n = 3) subjects had similar half-times for insulin action (t(1/2) = 25 +/- 9 vs. 25 +/- 8 min) and maximal responses (Cl(max) = 705 +/- 46 vs. 668 +/- 259 ml x min(-1) x m(-2), respectively), whereas EC(50) was 240 +/- 84 microU/ml in the lean vs. 364 +/- 229 microU/ml in the obese (P < 0.04). EC(50) and the insulin sensitivity index (ISI, initial slope of the dose-response curve), but not Cl(max), were related to body adiposity and fat distribution with r of 0.6-0.8 (P < 0.05). Thus, despite the small number of study subjects, we were able to reproduce information consistent with the literature. In addition, among the lean individuals, t(1/2) was positively related to the ISI (r = 0.72, P < 0.02). We conclude that the test here presented, based on a more elaborate representation of glucose kinetics and insulin action, allows a reliable quantitation of the insulin dose-response curve for whole body glucose utilization in a single session of relatively short duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号