首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Combinatorial overexpression of aromatic amino acid biosynthesis (AAAB) genes in the L-tyrosine producing Escherichia coli strains T1 and T2 was employed to search for AAAB reactions limiting L-tyrosine production. All AAAB genes except aroG and tyrA, which were substituted by their feedback resistant derivatives in the host strains, were cloned and overexpressed. A total of 72 different strains overexpressing various AAAB gene combinations were generated and from those strains with improved phenotype, enzymatic bottlenecks of the AAAB pathway could be inferred. The two major gene overexpression targets for increased L-tyrosine production in E. coli were ydiB and aroK, coding for a shikimate dehydrogenase and a shikimate kinase, respectively, and the combination of ydiB and aroK for overexpression resulted in the best L-tyrosine producing strains in this study, yielding 45% for strain T1 and 26% for strain T2, respectively, higher L-tyrosine titers. Interestingly, overexpression studies with combinations of more than one gene revealed that new gene targets could be identified when overexpessed together with other genes but not alone as single gene overexpression. For example, tyrB encoding the last enzyme of the AAAB pathway, an aromatic amino acid transaminase, improved L-tyrosine production significantly when co-overexpressed together with ydiB or aroK, but not when overexpressed alone. It is also noteworthy that E. coli T1, which generally yielded less L-tyrosine, was amenable to greater improvements than strain T2, i.e. E. coli T1 exhibited generally more space for phenotype improvement.  相似文献   

3.
A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.  相似文献   

4.
The products of two adjacent genes in the chromosome of Methanococcus jannaschii are similar to the amino and carboxyl halves of phosphonopyruvate decarboxylase, the enzyme that catalyzes the second step of fosfomycin biosynthesis in Streptomyces wedmorensis. These two M. jannaschii genes were recombinantly expressed in Escherichia coli, and their gene products were tested for the ability to catalyze the decarboxylation of a series of alpha-ketoacids. Both subunits are required to form an alpha(6)beta(6) dodecamer that specifically catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde. This transformation is the fourth step in the biosynthesis of coenzyme M, a crucial cofactor in methanogenesis and aliphatic alkene metabolism. The M. jannaschii sulfopyruvate decarboxylase was found to be inactivated by oxygen and reactivated by reduction with dithionite. The two subunits, designated ComD and ComE, comprise the first enzyme for the biosynthesis of coenzyme M to be described.  相似文献   

5.
White RH 《Biochemistry》2004,43(23):7618-7627
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to DHQ in Methanocaldococcus jannaschii. Here I report that 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde are precursors to DHQ. The sugar, which is derived from glucose 6-P, supplies a "hydroxyacetone" fragment, which, via a transaldolase reaction, undergoes an aldol condensation with the l-aspartate semialdehyde to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid. Despite the fact that both hydroxyacetone and hydroxyacetone-P were measured in the cell extracts and confirmed to arise from glucose 6-P, neither compound was found to serve as a precursor to DHQ. This amino sugar then undergoes a NAD dependent oxidative deamination to produce 3,7-dideoxy-d-threo-hept-2,6-diulosonic acid which cyclizes to 3-dehydroquinate. The protein product of the M. jannaschii MJ0400 gene catalyzes the transaldolase reaction and the protein product of the MJ1249 gene catalyzes the oxidative deamination and the cyclization reactions. The DHQ is readily converted into dehydroshikimate and shikimate in M. jannaschii cell extracts, consistent with the remaining steps and genes in the pathway being the same as in the established shikimate pathway.  相似文献   

6.
The complete genomic sequencing of Methanococcus jannaschii cannot identify the gene for the cysteine-specific member of aminoacyl-tRNA synthetases. However, we show here that enzyme activity is present in the cell lysate of M. jannaschii. The demonstration of this activity suggests a direct pathway for the synthesis of cysteinyl-tRNA(Cys) during protein synthesis.  相似文献   

7.
Efficient biosynthesis of L-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for L-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to L-tyrosine on two plasmids. Rational engineering to improve L-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to L-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter L-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways.  相似文献   

8.
The Drosophila Genome Project database contains a gene, CG7431, annotated to be an "unclassifiable biogenic amine receptor." We have cloned this gene and expressed it in Chinese hamster ovary cells. After testing various ligands for G protein-coupled receptors, we found that the receptor was specifically activated by tyramine (EC(50), 5x10(-7)M) and that it showed no cross-reactivity with beta-phenylethylamine, octopamine, dopa, dopamine, adrenaline, noradrenaline, tryptamine, serotonin, histamine, and a library of 20 Drosophila neuropeptides (all tested in concentrations up to 10(-5) or 10(-4)M). The receptor was also expressed in Xenopus oocytes, where it was, again, specifically activated by tyramine with an EC(50) of 3x10(-7)M. Northern blots showed that the receptor is already expressed in 8-hour-old embryos and that it continues to be expressed in all subsequent developmental stages. Adult flies express the receptor both in the head and body (thorax/abdomen) parts. In addition to the Drosophila tyramine receptor gene, CG7431, we found another closely related Drosophila gene, CG16766, that probably also codes for a tyramine receptor. Furthermore, we annotated similar tyramine-like receptor genes in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine receptor is, to our knowledge, the first cloned insect G protein-coupled receptor that appears to be fully specific for tyramine.  相似文献   

9.
One of the early steps in the biosynthesis of coenzyme F(420) in Methanocaldococcus jannaschii requires generation of 2-phospho-L-lactate, which is formed by the phosphorylation of L-lactate. Preliminary studies had shown that L-lactate in M. jannaschii is not derived from pyruvate, and thus an alternate pathway(s) for its formation was examined. Here we report that L-lactate is formed by the NAD(+)-dependent oxidation of l-lactaldehyde by the MJ1411 gene product. The lactaldehyde, in turn, was found to be generated either by the NAD(P)H reduction of methylglyoxal or by the aldol cleavage of fuculose-1-phosphate by fuculose-1-phosphate aldolase, the MJ1418 gene product.  相似文献   

10.
Negrel J  Javelle F 《Phytochemistry》2001,56(6):523-527
L-Tyrosine beta-naphthylamide, a synthetic substrate designed to measure tyrosine aminopeptidase activity, is a potent inhibitor of hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase (THT) purified from elicited tobacco cell-suspension cultures. The inhibition is competitive, with the inhibitor binding reversibly to the tyramine binding site of the enzyme. Similar results were obtained with THT extracted from elicited potato cell-suspension cultures. Ki values were found to be 0.66 microM for the enzyme from tobacco and 0.3 microM for the enzyme from potato. L-Tyrosine 7-amido-4-methylcoumarin, a fluorogenic substrate for tyrosine aminopeptidases, the structure of which is close to that of L-tyrosine beta-naphthylamide. was also a powerful inhibitor, but slightly less effective with Ki values of 0.72 and 0.42 microM for tobacco and potato THT, respectively. L-Tyrosine beta-naphthylamide was rapidly hydrolysed when fed in vivo to tobacco or potato cell cultures or when incubated in crude enzymic extracts prepared from these cultures. This hydrolysis, which is presumably catalysed by aminopeptidases, precludes the use of L-tyrosine amides as inhibitors of THT in vivo.  相似文献   

11.
The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.  相似文献   

12.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

13.
We report the first characterization and classification of Orf13 (S. refuineus) as a heme-dependent peroxidase catalyzing the ortho-hydroxylation of L-tyrosine to L-DOPA. The putative tyrosine hydroxylase coded by orf13 of the anthramycin biosynthesis gene cluster has been expressed and purified. Heme b has been identified as the required cofactor for catalysis, and maximal L-tyrosine conversion to L-DOPA is observed in the presence of hydrogen peroxide. Preincubation of L-tyrosine with Orf13 prior to the addition of hydrogen peroxide is required for L-DOPA production. However, the enzyme becomes inactivated by hydrogen peroxide during catalysis. Steady-state kinetic analysis of L-tyrosine hydroxylation revealed similar catalytic efficiency for both L-tyrosine and hydrogen peroxide. Spectroscopic data from a reduced-CO(g) UV-vis spectrum of Orf13 and electron paramagnetic resonance of ferric heme Orf13 are consistent with heme peroxidases that have a histidyl-ligated heme iron. Contrary to the classical heme peroxidase oxidation reaction with hydrogen peroxide that produces coupled aromatic products such as o,o'-dityrosine, Orf13 is novel in its ability to catalyze aromatic amino acid hydroxylation with hydrogen peroxide, in the substrate addition order and for its substrate specificity for L-tyrosine. Peroxygenase activity of Orf13 for the ortho-hydroxylation of L-tyrosine to L-DOPA by a molecular oxygen dependent pathway in the presence of dihydroxyfumaric acid is also observed. This reaction behavior is consistent with peroxygenase activity reported with horseradish peroxidase for the hydroxylation of phenol. Overall, the putative function of Orf13 as a tyrosine hydroxylase has been confirmed and establishes the first bacterial class of tyrosine hydroxylases.  相似文献   

14.
Enterococcus faecium RM58 produces beta-phenylethylamine and tyramine. A gene from Ent. faecium RM58 coding for a 625 amino-acid residues protein that shows 85% identity to Enterococcus faecalis tyrosine decarboxylase has been expressed in Escherichia coli, resulting in L-phenylalanine and L-tyrosine decarboxylase activities. Both activities were lost when a truncated protein lacking 84 amino acids at its C-terminus was expressed in E. coli. This study constitutes the first genetic characterization of a bacterial protein having L-phenylalanine decarboxylase activity and solves a long-standing question regarding the specificity of tyrosine decarboxylases in enterococci.  相似文献   

15.
Polyamines are present in high concentrations in archaea, yet little is known about their synthesis, except by extrapolation from bacterial and eucaryal systems. S-Adenosylmethionine (AdoMet) decarboxylase, a pyruvoyl group-containing enzyme that is required for spermidine biosynthesis, has been previously identified in eucarya and Escherichia coli. Despite spermidine concentrations in the Methanococcales that are several times higher than in E. coli, no AdoMet decarboxylase gene was recognized in the complete genome sequence of Methanococcus jannaschii. The gene encoding AdoMet decarboxylase in this archaeon is identified herein as a highly diverged homolog of the E. coli speD gene (less than 11% identity). The M. jannaschii enzyme has been expressed in E. coli and purified to homogeneity. Mass spectrometry showed that the enzyme is composed of two subunits of 61 and 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2) complex. The pyruvoyl-containing subunit is less than one-half the size of that in previously reported AdoMet decarboxylases, but the holoenzyme has enzymatic activity comparable to that of other AdoMet decarboxylases. The sequence of the M. jannaschii enzyme is a prototype of a class of AdoMet decarboxylases that includes homologs in other archaea and diverse bacteria. The broad phylogenetic distribution of this group suggests that the canonical SpeD-type decarboxylase was derived from an archaeal enzyme within the gamma proteobacterial lineage. Both SpeD-type and archaeal-type enzymes have diverged widely in sequence and size from analogous eucaryal enzymes.  相似文献   

16.
Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.  相似文献   

17.
In sequenced genomes, protein coding regions with unassigned function constitute between 10 and 50% of all open reading frames. Often key enzymes cannot be identified using sequence homology searches. For example, despite the fact that methanogens have an apparently functional gluconeogenesis pathway, standard tools have been unable to identify a fructose-1,6-bisphosphatase (FBPase) gene in the sequenced Methanoccocus jannaschii genome. Using a combination of functional and structural tools, we have shown that the protein product of the M. jannaschii gene MJ0109, which had been tentatively annotated as an inositol monophosphatase (IMPase), has both IMPase and FBPase activities. Moreover, several gene products annotated as IMPases from different thermophilic organisms also possess FBPase activity. Thus, we have found the FBPase that was 'missing' in thermophiles and shown that it also functions as an IMPase.  相似文献   

18.
An Arthrobacter sp. metabolizes L-tyrosine by a pathway involving 3,4-dihydroxyphenylacetate as a key intermediate. p-Hydroxyphenylpyruvate is formed from tyrosine by an amino-transferase specifically requiring alpha-ketoglutarate for activity, and is then converted to p-hydroxyphenylacetate by an oxidative decarboxylation. p-Hydroxyphenylacetaldehyde is not an intermediate in the formation of p-hydroxyphenylacetate. Extracts of the bacterium oxidize 3,4-dihydroxyphenylacetate to delta-carboxymethyl-alpha-hydroxymuconic acid which, when supplemented with 2 mol of diphosphopyridine dinucleotide, results in the production of stoichiometric amounts of succinate and pyruvate.  相似文献   

19.
Increasing evidence on the importance of fluctuations in NAD+ levels in the living cell is accumulating. Therefore a deeper knowledge on the regulation of coenzyme synthesis and recycling is required. In this context the study of NMN adenylyltransferase (EC 2.7.7. 1), a key enzyme in the NAD+ biosynthetic pathway, assumes a remarkable relevance. We have previously purified to homogeneity and characterized the protein from the thermophilic archaeon Sulfolobus solfataricus. The determination of partial sequence of the S. solfataricus enzyme, together with the recent availability of the genome sequence of the archaeon Methanococcus jannaschii allowed us, based on sequence similarity, to identify the M. jannaschii NMN adenylyltransferase gene. As far as we know from literature, this is the first report on the NMN adenylyltransferase gene.  相似文献   

20.
The nature of the pigment formed by Vibrio cholerae and the characterization of its biosynthetic pathway is shown. This microorganism is able to synthesize melanin-like pigment when cultured in the presence of L-tyrosine. Other phenolic chemicals related to L-tyrosine do not lead to pigment production. The microorganism has no tyrosine hydroxylase activity, and the levels of dopa oxidase activity are very low, making the existence of a tyrosinase very unlikely. However, Vibrio cholerae contained transami-nases that transforms L-tyrosine into p-hydroxyphenylpyruvate. Moreover, Vibrio cholerae is able to go further in the catabolic pathway, releasing a great amount of homogentisic acid. This acid can spontaneously be oxidized to its p-quinone form, which subsequently polymerizes leading to pigment formation. It is concluded that the pigment formed by Vibrio cholerae is not synthesized by the Raper-Mason pathway, but by a L-tyrosine catabolism pathway leading to homogentisic acid. Some simple properties of that melanin are compared to model eu- and pheomelanin, but no clear distinction could be stated, indicating the similarity between all these pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号