首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA,DszB,DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBT-MO)和DBT-砜单加氧酶(DszA or DBTO2-MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2),FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA,DszB,DszC和DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA,DszB,DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%,3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

2.
Gasoline-contaminated soil from Isfahan, Iran was selected to isolate a bacterium capable of desulfurizing dibenzothiophene (DBT). The isolated strain was named R1 and identified as Rhodococcus erythropolis through biochemical tests as well as sequencing of 16S rRNA gene. This strain could efficiently produce 2-hydroxybiphenyl (HBP) from DBT via the 4S metabolic pathway. The highest HBP amount was produced at 2 mM DBT with addition of glucose (10 g l(-1)), ethanol (3 g l(-1)), glycerol (2 g l(-1)) or succinate (10 g l(-1)) as carbon sources at pH 7. Highest respiration and growth rates were observed by microplate titration on 0.1 mM HBP, and addition of 0.2 mM HBP to glucose (1 g l(-1)) and DBT (0.3 mM) could inhibite the respiration of the isolate. The isolated strain could grow up to 0.4 mM of HBP when it is used with mineral sulfur as sole sulfur source. To the best of our knowledge this is the first report on a microtiter assay for the production and utilization of HBP by Rhodococcus.  相似文献   

3.
The dibenzothiophene (DBT) desulfurizing bacterium metabolizes DBT to form 2-hydroxybiphenyl without breaking the carbon skeleton. Of the DBT desulfurization enzymes, DszC and DszA catalyze monooxygenation reactions, both requiring flavin reductase. We searched for non-DBT-desulfurizing microorganisms producing a flavin reductase that couples more efficiently with DszC than that produced by the DBT desulfurizing bacterium Rhodococcus erythropolis D-1, and found Paenibacillus polymyxa A-1 to be a promising strain. The enzyme was purified to complete homogeneity. K(m) values for FMN and NADH were 2.1 microM and 0.57 mM, respectively. Flavin compounds were good substrates, some nitroaromatic compounds were also active, and regarding the electron donor, the activity for NADPH was about 1.5 times that for NADH. In the coupling assay with DszC, only FMN or riboflavin acted as the electron acceptor. The coupling reactions of P. polymyxa A-1 flavin reductase with DszC and DszA proceeded more efficiently (3.5- and 5-fold, respectively) than those of R. erythropolis D-1 flavin reductase when identical enzyme activities of each flavin reductase were added to the reaction mixture. The result of the coupling reaction suggested that, in the microbial DBT desulfurization, flavin reductase from the non-DBT-desulfurizing bacterium was superior to that from the DBT-desulfurizing bacterium.  相似文献   

4.
Biodesulfurization of organic-sulfur compounds   总被引:2,自引:0,他引:2  
A screening assay in which dibenzothiophene (DBT) or DBT-sulfone served as the only bioavailable source of sulfur was used to obtain two new bacterial isolates, strains UM9 and UM3, that desulfurized either substrate. Strain UM9 produced the desulfurized product, 2-hydroxybiphenyl (HBP); no other identifiable desulfurized products or released sulfate or sulfite were detected. Biodesulfurization activity occurred only for growing cultures and was depressed by free sulfate. Neither isolate grew on DBT, DBT-sulfone, or HBP as sole carbon sources. Under optimized conditions of pH and temperature, strain UM9 exhibited up to 35% greater biodesulfurization of DBT-sulfone than did UM3, and both isolates also desulfurized several other organic-sulfur compounds. The kinetics and characteristics of biodesulfurization by either UM3 or UM9, tentatively identified as species ofRhodococcus, indicated mechanisms different from those reported in the literature for other bacteria.  相似文献   

5.
6.
Desulfurization of a model fuel system consisting of hexadecane and dibenzothiophene (DBT) by Rhodococcus rhodochrous IGTS8 was demonstrated in a 2-L continuous stirred tank reactor (CSTR). The reactor was operated in a semicontinuous and continuous mode with and without recycling of the model fuel. A constant volumetric desulfurization activity A(t), (in mg HBP L(-1) h(-1)) was maintained in the reactor with a feeding strategy of fresh cell suspension based on a first-order decay of the biocatalyst. Maximum desulfurization rates, as measured by specific desulfurization activity, of 1.9 mg HBP/g DCW h were attained. Rates of biocatalyst decay were on the order of 0.072 h(-1). Theoretical predictions of a respiratory quotient (RQ) associated with this biotransformation reaction agree well with experimental data from off-gas analysis. In addition, the ratio of the specific desulfurization activity a(t), (in mg HBP/g DCW h) of recycled and fresh biocatalyst was determined and evaluated.  相似文献   

7.
An organism, identified as Mycobacterium phlei GTIS10, was isolated based on its ability to use dibenzothiophene (DBT) as a sole source of sulfur for growth at 30-52 degrees C. Similar to other biodesulfurization-competent organisms, M. phlei GTIS10 converts DBT to 2-hydroxybiphenyl (2-HBP), as detected by HPLC. The specific desulfurization activity of the 50 degrees C M. phlei GTIS10 culture was determined to be 1.1+/-0.07 micromol 2-HBP min(-1) (g dry cell)(-1). M. phlei GTIS10 can also utilize benzothiophene and thiophene as sulfur sources for growth. The dszABC operon of M. phlei GTIS10 was cloned and sequenced and was found to be identical to that of Rhodococcus erythropolis IGTS8. The presence of the R. erythropolis IGTS8 120-kb plasmid pSOX, which encodes the dszABC operon, has been demonstrated in M. phlei GTIS10. Even though identical dsz genes are contained in both cultures, the temperature at which resting cells of R. erythropolisIGTS8 reach the highest rate of DBT metabolism is near 30 degrees C whereas the temperature that shows the highest activity in resting cell cultures of M. phlei GTIS10 is near 50 degrees C, and activity is detectable at temperatures as high as 57 degrees C. In M. phlei GTIS10, the rate-limiting step in vivo appears to be the conversion of DBT to dibenzothiophene sulfone catalyzed by the product of the dszC gene, DBT monooxygenase. The thermostability of individual desulfurization enzymes was determined and 2-hydroxybiphenyl-2-sulfinate sulfinolyase, encoded by dszB, was found to be the most thermolabile. These results demonstrate that the thermostability of individual enzymes determined in vitro is not necessarily a good predictor of the functional temperature range of enzymes in vivo.  相似文献   

8.
Dibenzothiophene (DBT) degradation activity of recombinant Rhodococcus sp. T09/pRKPP was increased by about 3.5-fold by introduction of the NAD(P)H/FMN oxidoreductase gene (dszD), while DBT desulfurization activity remained the same with production of dibenzo[1,2]oxathiin-6-oxide, which was caused by insufficient activity of the last desulfurization step involving a desulfinase. Introduction of an additional dsz operon resulted in a 3.3-fold increase DBT desulfurization activity (31 mol g dry cell–1 h–1) compared with that of T09/pRKPP (9.5 mol g dry cell–1 h–1). Furthermore, optimization of DBT at 25 mg l–1 and glucose at 10 g l–1, increased the total DBT desulfurization activity 2- to 3-fold due to increases in the DBT desulfurizing specific activity and the final cell concentration.  相似文献   

9.
Various carbon and sulfur sources on the growth and desulfurization activity of Mycobacterium strain G3, which is a dibenzothiophene (DBT)-degrading microorganism, were studied. Ethanol, glucose or glycerol as the sole carbon source and MgSO4, taurine or dimethyl sulfoxide (DMSO) as the sole sulfur source were suitable for the growth. In addition, desulfurization activity was expressed in medium containing taurine, MgSO4 or DMSO at 0.1 mM, when 217 mM ethanol was used as the sole carbon source. The highest desulfurization activity was in the stationary phase cells after 5 days' growth, rather than those harvested during active growth, when Mycobacterium G3 was cultivated in medium containing 217 mM ethanol and 0.1 mM MgSO4. Thus alternative sulfur sources to DBT can be used for the cultivation of this desulfurizing microorganism.  相似文献   

10.
The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batch and fed-batch modes) demonstrated that DBTO(inf2) as the sole sulfur source yielded a greater amount of product than did DBT. Specifically, 100 (mu)M DBT maximally yielded (apprx=)40 (mu)M OH-BP, while 100 (mu)M DBTO(inf2) yielded (apprx=)60 (mu)M OH-BP. Neither maintaining the pH at 6.0 nor adding an additional carbon source increased the yield of OH-BP. The presence of SO(inf4)(sup2-) in growth media repressed expression of desulfurization activity, but SO(inf4)(sup2-) added to suspensions of cells grown in DBT or DBTO(inf2) did not inhibit desulfurization activity.  相似文献   

11.
脱硫工程菌的构建及其脱硫性能分析   总被引:1,自引:0,他引:1  
以专一性脱硫菌德氏假单胞菌Pseudomonas delafieldii R-8为出发菌株, 利用pPR9TT穿梭质粒构建脱硫操纵子表达载体, 转化原始菌培养得到1株多拷贝脱硫基因的脱硫工程菌R-8-1, 并对其脱硫性能进行了研究。结果表明, 在同样的生物催化脱硫反应条件下, 工程菌的脱硫活性达到6.25 mmol DBT/g dry cell/h, 是原始菌的2倍; 柴油的脱硫试验表明, 在12 h内工程菌静息细胞能将柴油硫含量从310.8 mg/L降至100.1 mg/ L, 脱硫率达到68%, 而原始菌为53%。进一步比较了重组质粒pPR-dsz在工程菌株中传代的稳定性, 试验表明pPR-dsz在工程菌株R-8-1中具有良好的遗传稳定性。此研究为生物脱硫提供了1株优良的工程菌株, 并为该技术的应用提供了参考。  相似文献   

12.
Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulphur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0·1–2 mmol l−1) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulphur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0·1 and 0·5 mmol l−1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.  相似文献   

13.
Biocatalytic desulfurization is still not a commercial technology, but conceptual engineering and sensitivity analyses have shown that the approach is very promising. The purpose of this paper is to investigate further some aspects of the biodesulphurization pathways, discussing the non-destructive pathway with the well-known Rhodococcus rhodochrous IGTS8. Findings revealed byproducts, such as 2′-hydroxybiphenyl (HBP), sulfite and sulfate, obtained by the desulfurization of dibenzothiophene (DBT), to exert an inhibiting effect. The results suggest that IGTS8 may follow two different metabolic pathways in stationary-growth-phase cells or under growing conditions. The first pathway is characterized by oxidative steps, which convert DBT to DBT sulfoxide and to DBT sulfone. The sulfone is transformed to 2-(2′-hydroxyphenyl)benzene sulfinate and then to HBP and sulfite by a sulfinic acid hydrolase. In the second pathway the sulfone is further oxidized to 2-(2′-hydroxyphenyl)benzene sulfonate and then to HBP and sulfate by a sulfonic acid hydrolase. Experiments using benzene sulfonic acid suggest that the sulfonic acid hydrolase is an induced enzyme. Received: 8 June 1998 / Received revision: 1 October 1998 / Accepted: 2 October 1998  相似文献   

14.
Microbial desulfurization of organic sulfur compounds in petroleum   总被引:26,自引:0,他引:26  
Sulfur removal from petroleum is important from the standpoint of the global environment because the combustion of sulfur compounds leads to the production of sulfur oxides, which are the source of acid rain. As the regulations for sulfur in fuels become more stringent, the existing chemical desulfurizations are coming inadequate for the "deeper desulfurization" to produce lower-sulfur fuels without new and innovative processes. Biodesulfurization is rising as one of the candidates. Several microorganisms were found to desulfurize dibenzothiophene (DBT), a representative of the organic sulfur compounds in petroleum, forming a sulfur-free compound, 2-hydroxybiphenyl. They are promising as biocatalysts in the microbial desulfurization of petroleum because without assimilation of the carbon content, they remove only sulfur from the heterocyclic compounds which is refractory to conventional chemical desulfurization. Both enzymological and molecular genetic studies are now in progress for the purpose of obtaining improved desulfurization activity of organisms. The genes involved in the sulfur-specific DBT desulfurization were identified and the corresponding enzymes have been investigated. From the practical point of view, it has been proved that the microbial desulfurization proceeds in the presence of high concentrations of hydrocarbons, and more complicated DBT analogs are also desulfurized by the microorganisms. This review outlines the progress in the studies of the microbial desulfurization from the basic and practical point of view.  相似文献   

15.
生物脱有机硫作为常规的加氢脱硫替代方法近几年受到越来越多的重视,也取得了一些重要的结果,这都推动了生物脱硫向产业化应用。本文简要综述了最近几年通过菌株改造提高催化剂活力和消除无机硫抑制以及脱硫酶系纯化方面所取得一些进展。  相似文献   

16.
Paenibacillus A11-2 can efficiently cleave two carbon&bond;sulfur bonds in dibenzothiophene (DBT) and alkyl DBTs, which are refractory by conventional petroleum hydrodesulfurization, to remove sulfur atom at high temperatures. An 8.7-kb DNA fragment containing the genes for the DBT desulfurizing enzymes of A11-2 was cloned in Escherichia coli and characterized. Heterologous expression analysis of the deletion mutants identified three open reading frames that were required for the desulfurization of DBT to 2-hydroxybiphenyl (2-HBP). The three genes were designated tdsA, tdsB, and tdsC (for thermophilic desulfurization). Both the nucleotide sequences and the deduced amino acid sequences show significant homology to dszABC genes of Rhodococcus sp. IGTS8, but there are several local differences between them. Subclone analysis revealed that the product of tdsC oxidizes DBT to DBT-5,5'-dioxide via DBT-5-oxide, the product of tdsA converts DBT-5,5'-dioxide to 2-(2-hydroxyphenyl) benzene sulfinate, and the product of tdsB converts 2-(2-hydroxyphenyl)benzene sulfinate to 2-HBP. Cell-free extracts of a recombinant E. coli harboring all the three desulfurization genes converted DBT to 2-HBP at both 37 and 50 degrees C. In vivo and in vitro exhibition of desulfurization activity of the recombinant genes derived from a Paenibacillus indicates that an E. coli oxidoreductase can be functionally coupled with the monooxygenases of a gram-positive thermophile.  相似文献   

17.
Rhodococcus erythropolis has been studied widely for potential applications in biodesulfurization. Previous works have been largely experimental with an emphasis on the characterization and genetic engineering of desulfurizing strains for improved biocatalysis. A systems modeling approach that can complement these experimental efforts by providing useful insights into the complex interactions of desulfurization reactions with various other metabolic activities is absent in the literature. In this work, we report the first attempt at reconstructing a flux-based model to analyze sulfur utilization by R. erythropolis. The model includes the 4S pathway for dibenzothiophene (DBT) desulfurization. It predicts closely the growth rates reported by two independent experimental studies, and gives a clear and comprehensive picture of the pathways that assimilate the sulfur from DBT into biomass. In addition, it successfully elucidates that sulfate promotes higher cell growth than DBT and its presence in the medium reduces DBT desulfurization rates. A study using eight carbon sources suggests that ethanol and lactate yield higher cell growth and desulfurization rates than citrate, fructose, glucose, gluconate, glutamate, and glycerol.  相似文献   

18.
Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2, both carrying a multicopy integrated guar alpha-galactosidase, have been cultivated in continuous cultures, using various mixtures of carbon sources and cultivation conditions. Both S. cerevisiae SU50B and H. polymorpha 8/2 are stable and produce high levels of extracellular alpha-galactosidase in continuous cultures for more than 500 h. For these expression systems the strong inducible promoter systems GAL7 and methanol oxidase, respectively, were used. The induction of alpha-galactosidase synthesis by galactose in SU50B is limited by the low galactose uptake. Apart from that, at high dilution rates, the glucose repression is substantial, and a maximal expression level of 28.6 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1 could be obtained. In H. polymorpha, the induction of alpha-galactosidase synthesis, in addition to methanol oxidase synthesis using formaldehyde, is very effective up to 42 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1. Productivities in terms of specific production rate enable a good comparison with those of other heterologous expression systems in the literature. The productivities found with S. cerevisiae SU50B and H. polymorpha, 3.25 and 5.5 mg of alpha-galactosidase.g of biomass-1.liter-1.h-1, respectively, rank among the highest reported in the literature. Enzyme production and secretion in H. polymorpha are more complex. A two-peaked optimum is found in enzyme production. No clear explanation of this phenomenon can be given.  相似文献   

19.
Summary Morphine and codeine accumulation in Papaver somniferum suspension cultures increased markedly after removal of hormones from the medium. Cultures developed hormone self-sufficiency without organogenesis or development of meristemoids; enhanced synthesis of morphinan alkaloids was not dependent on formation of shoots, roots or embryos. Without exogenous hormones, maximum codeine and morphine concentrations were 3.0 mg g–1 dry weight and 2.5 mg g–1 dry weight respectively, up to three times higher than in cultures supplied with hormones. Hormone-deprived cells produced a higher ratio of codeine:morphine than cultures supplied with auxin and cytokinin. Improved alkaloid production was correlated with slower overall growth rate.  相似文献   

20.
Ohshiro T  Izumi Y 《Bioseparation》2000,9(3):185-188
DszC and DszA, DBT monooxygenase and DBT sulfone monooxygenase, respectively, involved in dibenzothiophene (DBT) desulfurization, were purified to homogeneity from Rhodococcus erythropolis D-1. The two enzymes were crystallized and enzymologically characterized. We found a high activity of flavin reductase in the non-DBT-desulfurizing bacterium, Paenibacillus polymyxa A-1, which is essential for DszC and A activities, and purified to homogeneity and characterized the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号