首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
From the peelings of cucumber Cucumis sativus and marrow squash Cucurbita pepo var. giramontia highly purified ascorbate oxidase preparations were obtained. Molecular weights, optical and EPR spectra, total copper contents and different type copper contents of the both proteins were similar. The effects of NaN3, KCN, I- and F- on the optical and EPR spectra of the proteins were studied. The incubation of ascorbate oxidase with these anions lead to the partial reduction of the copper. The data obtained indicate that F- is bound to the copper atoms of the type 2, and that N5- modifies surroundings of these copper atoms. The copper atoms of types 1 and 2 in both ascorbate oxidases, unlike fungal laccase, are completely reduced under effect of CN-. The bleaching of ascorbate oxidase, observed in alkaline media involves also increasing of the intensity of the band at 330 nm. The results show that three types of copper in ascorbate oxidase have various sensitivities to the inorganic anions. These data are compared with results observed for another blue copper-containing enzymes, such as laccases and ceruloplasmin.  相似文献   

2.
It was found that cytochrome oxidase from bovine cardiac muscle possesses marked superoxide dismutase activity. Superoxide dismutase activity is inhibited by cyanide and azide or by alkaline or thermal treatments. This activity is also suppressed by chelating agents, e.g. bathocuproin. The data obtained indicate that superoxide dismutase activity of cytochrome oxidase is due to the copper atoms of the enzyme. The experiments on the copper-containing subunit support this conclusion. Possible physiological significance of superoxide dismutase activity of cytochrome oxidase is discussed.  相似文献   

3.
The binding of ionic and nonionic, nondenaturing detergents to cytochrome c oxidase has been examined. All bind and displace part but not all of the phospholipid that is associated with the enzyme after isolation. From 6 to 10 phospholipid molecules, depending on the detergent used, do not exchange and these are mostly diphosphatidylglycerol molecules as first shown by Awasthi et al. ((1971) Biochim. Biophys. Acta 226, 42). The binding of Triton X-100 and deoxycholate to the cytochrome c oxidase complex has been studied in detail. Both bind to the enzyme above their critical micelle concentrations: Triton X-100 in the amount of 180 +/- 10 molecules per complex and deoxycholate in the amount of 80 +/- 4 molecules per complex. In nonionic detergents, cytochrome c oxidase exists as a dimer (4 heme complex). The enzyme is dissociated into the monomer or heme aa3 complex by delipidation in bile salts. Activity measurements in different detergents suggest that cytochrome c oxidase requires a flexible, hydrophobic environment for maximal activity and that the dimer or 4 heme complex may be the active species.  相似文献   

4.
An interaction between cytochrome a in oxidized cytochrome c oxidase (CcO) and anions has been characterized by EPR spectroscopy. Those anions that affect the EPR g = 3 signal of cytochrome a can be divided into two groups. One group consists of halides (Cl-, Br-, and I-) and induces an upfield shift of the g = 3 signal. Nitrogen-containing anions (CN-, NO2-, N3-, NO3-) are in the second group and shift the g = 3 signal downfield. The shifts in the EPR spectrum of CcO are unrelated to ligand binding to the binuclear center. The binding properties of one representative from each group, azide and chloride, were characterized in detail. The dependence of the shift on chloride concentration is consistent with a single binding site in the isolated oxidized enzyme with a Kd of approximately 3 mm. In mitochondria, the apparent Kd was found to be about four times larger than that of the isolated enzyme. The data indicate it is the chloride anion that is bound to CcO, and there is a hydrophilic size-selective access channel to this site from the cytosolic side of the mitochondrial membrane. An observed competition between azide and chloride is interpreted by azide binding to three sites: two that are apparent in the x-ray structure plus the chloride-binding site. It is suggested that either Mg2+ or Arg-438/Arg-439 is the chloride-binding site, and a mechanism for the ligand-induced shift of the g = 3 signal is proposed.  相似文献   

5.
Cytochrome c is the specific and efficient electron transfer mediator between the two last redox complexes of the mitochondrial respiratory chain. Its interaction with both partner proteins, namely cytochrome c(1) (of complex III) and the hydrophilic Cu(A) domain (of subunit II of oxidase), is transient, and known to be guided mainly by electrostatic interactions, with a set of acidic residues on the presumed docking site on the Cu(A) domain surface and a complementary region of opposite charges exposed on cytochrome c. Information from recent structure determinations of oxidases from both mitochondria and bacteria, site-directed mutagenesis approaches, kinetic data obtained from the analysis of isolated soluble modules of interacting redox partners, and computational approaches have yielded new insights into the docking and electron transfer mechanisms. Here, we summarize and discuss recent results obtained from bacterial cytochrome c oxidases from both Paracoccus denitrificans, in which the primary electrostatic encounter most closely matches the mitochondrial situation, and the Thermus thermophilus ba(3) oxidase in which docking and electron transfer is predominantly based on hydrophobic interactions.  相似文献   

6.
7.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

8.
9.
From Pseudomonas AM 1 grown in a medium deficient in Cu, aa3-type cytochrome c oxidase was purified which contained 2 molecules of haem a and one atom of Cu per molecule. The enzyme showed absorption peaks at 428 and 595 nm in the oxidized form and at 442 and 604 nm in the reduced form, and its CO complex showed peaks at 432 and 602 nm. The enzyme in the oxidized state showed an obscure absorption peak around 800 nm instead of a peak at 820 nm. One mol of the enzyme oxidized maximally 76, 75, and 98 mol of the ferrocytochromes c of Candida krusei, horse and Pseudomonas AM 1 per sec, respectively. These reactions were 50% inhibited by 7 microM KCN. The product of reduction of O2 catalyzed by the enzyme was concluded to be H2O on the basis of the ratio of ferrocytochrome c oxidized to O2 consumed.  相似文献   

10.
11.
Cytochrome bd is a prokaryotic terminal oxidase catalyzing O2 reduction to H2O. The oxygen-reducing site has been proposed to contain two hemes, d and b595, the latter presumably replacing functionally CuB of heme-copper oxidases. We show that NO, in competition with O2, rapidly and potently (Ki = 100 +/- 34 nM at approximately 70 microM O2) inhibits cytochrome bd isolated from Escherichia coli and Azotobacter vinelandii in turnover, inhibition being quickly and fully reverted upon NO depletion. Under anaerobic reducing conditions, neither of the two enzymes reveals NO reductase activity, which is proposed to be associated with CuB in heme-copper oxidases.  相似文献   

12.
13.
Bilirubin oxidase [EC 1.3.3.5], purified from the culture medium of Myrothecium verrucaria, was found to contain two blue copper atoms per protein molecule with a molecular weight of ca. 52 kDa. The two copper atoms were estimated to be in the all cupric state by the cuproine colorimetric method and also atomic absorption analysis. We could remove the reduce cuprous ions from the holo enzyme by adding ascorbate, followed by a KCN solution, yielding an apo-enzyme with no activity. The apo-enzyme can be reconstituted with Cu or other divalent cations such as Co, Fe, and Cd, with accompanying recovery of the enzyme activity. The activity recovery depended upon the species of cation employed; Cu being most effective, an almost 100% recovery, and Cd the least, only a 25% recovery. We could obtain information on the copper ions and their coordination structure by spectroscopic analyses of the apo- and reconstituted enzymes, obtaining such as absorption, CD, MCD, and XPS spectra. The bilirubin oxidase catalyzed-reaction was a second order reaction with respect to copper bound with protein. The donor set was of the CuSS*N2 (S = Cys, S* = Met, N = His) type, i.e., the same as in the case of blue copper proteins. On studying the Co-substituted enzyme, it was revealed that the copper site of the enzyme had a 4-coordinated structure.  相似文献   

14.
X-ray absorption edge spectroscopy has been used to study the copper of 1--2 mM cytochrome c oxidase in the resting oxidized, mixed-valence, and fully reduced states. A comparison was made of this protein with copper complexes and with natural and artificial copper proteins. Spectra were obtained with synchrotron radiation from the SPEAR storage ring using highly sensitive fluorescence detectors. Temperatures of -80 to -120 degrees C were employed further to improve the stability of the samples and to avoid the possibility of either auto- or photon-induced reduction of the materials, which might have occurred in previous studies. In order to characterize the valence states of the Cu and Fe components, the samples were monitored by infrared and visible spectroscopy before and after irradiation by the X-ray beam. The combination of the optical and X-ray absorption techniques has afforded a deconvolution of the four species of copper in the various states of cytochrome c oxidase and the tentative assignment of Cu alpha, the copper redox coupled to the heme alpha of cytochrome alpha, as a highly covalent type of copper and Cu alpha 3, the copper of cytochrome alpha 3, as a more ionic 'blue' type I copper. The implications of these findings upon the mechanism of action of cytochrome oxidase are briefly outlined.  相似文献   

15.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

16.
The activity of cytochrome oxidase reconstituted into phospholipid vesicles has been studied as a function of orthophosphate, ATP and inositol hexakisphosphate concentrations. The respiratory-control ratio was found to be quite sensitive to these compounds and was inversely related to the anion concentration. This effect is related to a phosphate-dependent decrease in the rate constant for ferrocytochrome c oxidation observed in the presence of ionophores. The data cannot be interpreted simply on the basis of ionic strength, which is known to limit cytochrome c binding to cytochrome oxidase, since cytochrome oxidase-containing vesicles responded differently to phosphate depending on the energization state of the phospholipid membrane.  相似文献   

17.
G Goodman  J S Leigh 《Biochemistry》1985,24(9):2310-2317
Electron paramagnetic resonance (EPR) at 15 K was used to probe the magnetic interaction between the visible copper CuA2+ and ferric cytochrome a in the carbon monoxide compound of beef heart cytochrome oxidase. At pH 8.6, the midpoint potentials (Em's) for one-electron oxidation of CuA+ and cytochrome a2+ were found to be 195 and 235 mV, respectively. Because the Em of CuA is well below that of cytochrome a under these conditions, the microwave power saturation of CuA could be measured as a function of percentage cytochrome a oxidized. Although progressive power saturation data directly provide only the product of the spin-lattice and transverse relaxation rates delta [1/(T1T2)], Castner's theory for the saturation of inhomogeneously broadened lines [Castner, T.G., Jr. (1959) Phys. Rev. 115 (6), 1506-1515], along with our own theoretical formulation of the dipolar T2, enabled us to determine the change in T1 of CuA due to dipolar relaxation by cytochrome a. The orientation of the principal g values of CuA with respect to those of cytochrome a was evaluated in partially oriented membranous multilayers. When allowance was made for uncertainties in the relative CuA-cytochrome a configuration and in the dipolar axis-magnetic field orientation, a range for the spin-spin distance r was calculated on the basis of the dipolar T1 of the gx component of CuA. This distance range was further restricted by consideration of T1 for the nonunique orientations of CuA giving rise to the gy signal. Only those values of r are possible for which the calculated T1 ratio (gx/gy) is equal to the experimentally determined ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The structures of membrane proteins are difficult to obtain by crystallography and may be altered by the detergents used in their extraction. X-ray absorption spectroscopy has been used to identify the structures of the copper atoms of the membrane-bound enzyme in mitochondria and in submitochondrial particles at respective concentrations of 100 and 200 micron of molar copper. To within the experimental error, the x-ray absorption spectra of the copper atoms of the membrane-bound and the Yonetani (Yonetani, T. (1961) J. Biol. Chem. 236, 1680-1688) purified oxidase are identical; all detectable shells of the active site indicate no alteration of structural parameters. Significant differences are found when compared to the Hartzell-Beinert (Hartzell, R. C., and Beinert, H. (1974) Biochim. Biophys. Acta 368, 318-338) preparation. Extended x-ray absorption fine structure technology is now adequate for the direct studies of membrane proteins in situ in their natural environment.  相似文献   

19.
20.
The steady-state kinetics of high- and low-affinity electron transfer reactions between various cytochromes c and cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) preparations were studied spectrophotometrically and polarographically. The dissociation constants for the binding of the first and second molecules of horse cytochrome c (I = 15 mM) are 5.10(-8) M and 1.10(-5) M, respectively, close to the spectrophotometric Km values and consistent with the controlled binding model for the interaction between cytochrome c and cytochrome oxidase (Speck, S.H., Dye, D. and Margoliash, E. (1984) Proc. Natl. Acad. Sci. USA 81, 346-351) which postulates that the binding of a second molecule of cytochrome c weakens that of the first, resulting in low-affinity kinetics. While the Km of the polarographically assayed high-affinity reaction is comparable to that observed spectrophotometrically, the low-affinity Km is over an order of magnitude smaller and cannot be attributed to the binding of a second molecule of cytochrome c. Increasing the viscosity has no effect on the Vmax of the low-affinity reaction assayed polarographically, but increases the Km. Thus, the transition from high- to low-affinity kinetics is dependent on the frequency of productive collisions, as expected for a hysteresis model ascribing the transition to the trapping of the oxidase in a primed state for turnover. At ionic strengths above 150 mM, the rate of cytochrome c oxidation decreases without any correlation to the calculated net charge of the cytochrome c, indicating rate-limiting rearrangement of the two proteins in proximity to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号