首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuropeptides methionine enkephalin and FMRFamide, when injected into intact fiddler crabs, Uca pugilator, produce dark adaptation of the distal retinal pigment. Furthermore, both neuropeptides stimulate release of distal retinal pigment dark-adapting hormone activity from the isolated eyestalk neuroendocrine complex. It is hypothesized that both neuropeptides, when injected into intact fiddler crabs, act only indirectly on the distal retinal pigment, by stimulating release of this dark-adapting hormone.  相似文献   

2.
The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin (GTH) secretion. This review focuses on a family of neuropeptides, LPXRFamide (LPXRFa) peptides, which have been implicated in the regulation of GTH secretion. LPXRFa acts on the pituitary via a G protein-coupled receptor, LPXRFa-R, to enhance gonadal development and maintenance by increasing gonadotropin release and synthesis. Because LPXRFa exists and functions in several fish species, LPXRFa is considered to be a key neurohormone in fish reproduction control. The precursors to LPXRFamide peptides encoded plural LPXRFamide peptides and were highly divergent in vertebrates, particularly in lower vertebrates. Tissue distribution analyses indicated that LPXRFamide peptides were highly concentrated in the hypothalamus and other brainstem regions. In view of the localization and expression of LPXRFamide peptides in the hypothalamo-hypophysial system, LPXRFamide peptide in fish increase GTH release in vitro and in vivo. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of LPXRFa, a newly discovered key neurohormone.  相似文献   

3.
Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21-22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation (P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones.  相似文献   

4.
Upon transfer of Xenopus laevis from a white to a black background, the melanotrope cells in the pituitary pars intermedia secrete α‐melanocyte‐stimulating hormone, which stimulates dispersion of melanin pigment in skin melanophores. This adaptive behavior is under the control of neurotransmitters and neuropeptides of hypothalamic origin. The α‐melanocyte‐stimulating hormone‐producing cells and their hypothalamic control system provide an interesting model to study proteins required for biosynthetic and secretory processes involved in peptide hormone production and for brain–pituitary signaling. We present a 2‐D PAGE‐based proteome map of melanotrope cells from black‐adapted animals, identifying 204 different proteins by MS analysis.  相似文献   

5.
The ability of prolactin to influence the responsiveness of the lactating rat pituitary to luteinising hormone releasing hormone has been examinedin vitro. The pituitary responsivenessin vivo to luteinising hormone releasing hormone decreased as a function of increase in the lactational stimulus. Prolactin inhibited the spontaneousin vitro release of luteinising hormone and follicle stimulating hormone to a small extent, from the pituitary of lactating rats with the suckling stimulus. However, it significantly inhibited the release of these two hormones from luteinising hormone releasing hormone-stimulated pituitaries. The responsiveness of pituitaries of rats deprived of their litter 24 h earlier, to luteinising hormone releasing hormone was also inhibited by prolactin, although minimal. It was concluded that prolactin could be influencing the functioning of the pituitary of the lactating rat by (a) partially suppressing the spontaneous release of gonadotropin and (b) inhibiting the responsiveness of the pituitary to luteinising hormone releasing hormone.  相似文献   

6.
Summary When the pituitary of rainbow trout (Oncorhynchus mykiss) was incubated in a serum-free medium, a high level of growth hormone release as well as an activation of growth hormone synthesis were observed, suggesting the existence of hypothalamic inhibitory factor(s) on growth hormone synthesis. Although an inhibitory effect of somatostatin on growth hormone release is well established in both mammals and teleosts, an effect on growth hormone synthesis has not been demonstrated. In this study, we examined the effect of somatostatin on growth hormone synthesis in organ-cultured trout pituitary using immunoprecipitation and Northern blot analysis. Somatostatin inhibited growth hormone release from the cultured pituitary within 10 min after addition without affecting prolactin release. Incubation of the pituitary with somatostatin also caused a significant reduction in newly-synthesized growth hormone in a dose-related manner, as assessed by incorporation of [3H]leucine into immunoprecipitable growth hormone. There were no changes in the level or molecular length of growth hormone mRNA after somatostatin treatment, as assessed by Northern slot blot and Northern gel blot analyses. Human growth hormone-releasing factor stimulated growth hormone release, although the spontaneous synthesis of growth hormone was not augmented. However, somatostatin-inhibited growth hormone synthesis was restored by growth hormone-releasing factor to the control level. The spontaneous increase in growth hormone synthesis observed in the organ-cultured trout pituitary may be caused, at least in part, by the removal of the inhibitory effect of hypothalamic somatostatin.Abbreviations GH growth hormone - GHRF GH-releasing factor - PRL prolactin - SDS sodium dodecyl sulphate - SRIF somatostatin (somatropin release-inhibiting factor)  相似文献   

7.
The effect of vasoactive intestinal peptide (VIP) on anterior pituitary hormone release was examined in a variety of in vitro preparations. Synthetic VIP was capable of stimulating increased prolactin (PRL) release from male rat hemipituitaries in doses as low as 10−9 M only when the enzyme inhibitor bacitracin was present in the incubation medium. Natural porcine VIP was similarly capable of stimulating PRL release, but only at higher doses (10−6 M). Additionally, synthetic VIP was capable of stimulating PRL release from dispersed anterior pituitary cells harvested from adult male and lactating female rats and from an enriched population of lactotrophs obtained by unit gravity sedimentation of similar dispersed cells from infantile female rats. No effect of VIP on luteinizing hormone, growth hormone or thyroid stimulating hormone release was seen. These findings taken in concert with the presence of VIP in the hypothalamus, pituitary and hypophyseal portal plasma of the rat suggest a physiological role for VIP in the control of PRL secretion.  相似文献   

8.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

9.
Tsutsui K  Ukena K 《Peptides》2006,27(5):1121-1129
Probing undiscovered neuropeptides that play important roles in the regulation of pituitary function in vertebrates is essential for the progress of neuroendocrinology. Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to be located in the hypothalamo-hypophysial system and to decrease gonadotropin release from cultured anterior pituitary. We, therefore, designated this novel neuropeptide as gonadotropin-inhibitory hormone (GnIH). We further identified novel hypothalamic neuropeptides closely related to GnIH in the brains of other vertebrates, such as mammals, amphibians, and fish. The identified neuropeptides possessed a LPXRF-amide (X = L or Q) motif at their C-termini. These LPXRF-amide peptides also were localized in the hypothalamus and other brainstem areas and regulated pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and hypophysiotropic activity of these newly identified hypothalamic LPXRF-amide peptides in vertebrates.  相似文献   

10.

Expression of the diabetes (db/db) mutation in C57BL/KsJ mice results in functional suppression of the female pituitary-gonadal axis accompanied by premature utero-ovarian cytolipoatrophy. Cellular gluco- and lipo-metabolic disturbances promoted by the db/db systemic hyperglycemic-hyperinsulinemic state suppress pituitary gonadotropin release in response to gonadotropin-releasing hormone and gonadal steroid stimulation and results in a hypogonadal-infertility syndrome. Adult female C57BL/KsJ control (+/+ and +/? genotypes) and db/db littermates were monitored for associations in systemic and cellular alterations in luteinizing hormone (LH), follicle-stimulating hormone (FSH), gonadal steroid (binding) levels, and pituitary glucometabolic indices associated with db/db-enhanced lipid imbibition and cytostructural disruption. Obesity, hyperglycemia, and hyperinsulinemia characterized all db/db mutants relative to controls. Serum and pituitary progesterone and estradiol concentrations were suppressed in db/db mutants, in association with serum LH and FSH levels, but not with pituitary LH and FSH concentrations, which were comparable between groups. Pituitary insulin receptor binding and glucose utilization rates were suppressed in db/db groups relative to +/? indices. Structural and cytochemical analysis of anterior (AP), intermediate (IL), and neuro-(NP) hypophyseal lobes demonstrated prominent hypercytolipidemia in db/db mutants relative to controls. Prominent cytolipidemia was localized within well-granulated basophilic gonadotrophs and within IL and NP pituicytes. Vasolipidemia and interstitial cytoadiposity were prominent throughout all db/db pituitary lobes. Thus, disturbances associated with pituitary hypercytolipidemia are functional components of the expressed diabetes-associated hypogonadal syndrome in db/db mutants. Progressive alterations in hypophyseal cytoarchitecture are correlated with suppression of pituitary metabolic and endocrine indices, alterations that contribute to functional disruption of the pituitary-hypogonadal axis in C57BL/KsJ-db/db mice.

  相似文献   

11.
The central control of growth hormone (GH) secretion from the pituitary gland is ultimately achieved by the interaction between two hypothalamic neurohormones, somatostatin which inhibits and growth hormone-releasing hormone (GHRH) which stimulates GH release. The regulation of the somatostatin and GHRH release from the hypothalamus is regulated by a range of other neuropeptides, neurotransmitters, neurohormones. In this mini review we attempt to provide a short summary covering the anatomy and chemical characteristics of the various cell populations regulating GH secretion as a tribute to Miklós Palkovits who pioneered the field of functional neuroanatomy of hypothalamic networks.Special Issue Dedicated to Miklós Palkovits.  相似文献   

12.
Using the classical approach, a decapeptide was synthesized with the structure of porcine luteinizing hormone/follicle stimulating hormone releasing hormone reported by Matsuo, H., Baba, Y., Nair, R. M. G., Arimura, A. and Schally, A. V. (1971) Biochem. Biophys. Res. Commun. 43, 1393–1399. As already reported, this peptide was capable of inducing in vitro the release of luteinizing hormone and follicle stimulating hormone from rat pituitary glands. A specific antiserum against luteinizing hormone/follicle stimulating hormone releasing hormone has been generated in the guinea pig and this allowed the development of a radioimmunoassay for this peptide. The antisera, at a final dilution of to depending on the antiserum used, were able to bind 35% of the 131I-labelled antigen. The sensitivity of this assay method was 50 pg of luteinizing hormone/follicle stimulating hormone releasing hormone. The following substances did not cross-react: oxytocin, lysine-vasopressin, synthetic thyroid stimulating hormone releasing hormone, ovine luteinizing hormone, follicle stimulating hormone and prolactin. Des-Trp3 luteinizing hormone/follicle stimulating hormone releasing hormone, pyroglutamyl-histidyl-tryptophan and seryl-tyrosyl-glycyl-leucyl-arginyl-prolyl-glycinamide, exhibited flatter curves than luteinizing hormone/follicle stimulating hormone releasing hormone with a cross-reactivity of about . Using this method, luteinizing hormone/follicle stimulating hormone releasing hormone was assayed in extracts of the sheep stalk-median eminence and of the hypothalamus and in jugular vein blood from a normal ram and from normal male rats, from cyclic ewe and from hypophysectomized ram and rats. It was concluded that luteinizing hormone/follicle stimulating hormone releasing hormone is present in hypothalamic extracts and in plasma of sheep and rat.  相似文献   

13.
M. Benjamin 《Zoomorphology》1979,93(2):125-135
Summary The ultrastructure of the prolactin cells in nine-spined sticklebacks (Pungitius pungitius L.) with and without large pituitary cysts was compared. Prolactin cells from animals with cysts were less active as regards hormone synthesis and release than those from animals without cysts. Rough endoplasmic reticulum, mitochondria, Golgi apparatus and exocytotic figures were all more prominent in animals without cysts. Lysosomes and mature secretory granules were more plentiful in animals with cysts. The correlation between inactive prolactin cells and pituitary cysts argues against the hypothesis that cysts store prolactin released by holocrine secretion. It is more likely that the origin of cysts from degenerating cells signals extreme inactivity in the rostral pars distalis.  相似文献   

14.
Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.  相似文献   

15.
Summary

In the last few years, (bio)chemical and molecular biological studies have shown that several members of the hyperglycemic hormone family are present in different molecular forms. In vivo and in vitro bioassays revealed that some of these isoforms also play a role in the control of reproduction in decapod crustaceans. This communication gives a review of the cytological aspects of the eyestalk X-organ sinus gland complex, responsible for the synthesis, storage and release of these neuropeptides, and the molecular and functional aspects of those members involved in the control of reproduction. Finally, the role of the hyperglycemic hormone family in the regulation of reproduction in the female lobster is described as an example of the (possible) interactions of the members of the hyperglycemic hormone family with other (neuro)endocrine factors in the reproductive process of crustaceans.  相似文献   

16.
昆虫神经肽研究进展   总被引:4,自引:0,他引:4  
近年来鉴定了化学结构的昆虫神经肽数目呈快速上升趋势, 家蚕滞育激素和性信息素合成激活肽被分离纯化.三种近年出现的研究方法对寻找新型昆虫神经肽起到重要作用,已经成功地鉴定了数个新型神经肽.昆虫神经肽cDNA或基因组DNA克隆显示了新的结构信息和神经肽间的相互关系.  相似文献   

17.
Significant post-mortem changes in peptide concentration occur within the previously unstudied timeframe, i.e. within 1 h, for the proenkephalin A, proopiomelanoccortin, and tachykinin neuropeptidergic systems in the pituitary. These data differ from data obtained in other studies that concluded that peptides are stable for up to 72 h post-mortem. The post-mortem stability of the three neuropeptides, methionine enkephalin, substance P, and β-endorphin, was studied in the rat pituitary to test the hypothesis that significant post-mortem concentration changes of those three neuropeptides occur in the immediate post-mortem time period.  相似文献   

18.
A series of peptide analogs of luteinizing hormone releasing hormone (LH-RH), altered at position 6 and 10, was synthesized and evaluated in vivo for the ability to induce ovulation in the diestrous rat and in vitro for ability to release pituitary luteinizing hormone and follicle stimulating hormone. All the analogs with D-amino acid substitutions at position 6, even those with large bulky side chain, exhibited an amazingly high potency compared with the parent hormone, LH-RH. On the basis of the biological activities, structure-activity relationships in the central part of this molecule were discussed in detail.  相似文献   

19.
Summary A method for preparing enzymaticlaly dispersed pituitary cell cultures of carp (Cyprinus carpio) is described. The cultures have been used to assay a synthetic analog of gonadotropin releasing hormone (GnRH) and to determine the specificity of steroids able to affect gonadotropin (GtH) release in vitro. Time course secretion studies indicated that by 48 h incubation, in the presence of 500 pM GnRH, cumulative secretion of gonadotropin (719 ng±90/2.5×105 cells) had exceeded that of controls (446 ng±106/2.5×105 cells). Estradiol-17β, progesterone, testosterone, and 11-ketotestosterone showed different inhibitory effects on pituitary basal GtH release. Based on the results, it was concluded that carp pituitary cell cultures can be applied to investigations of several aspects of the hypothalamo-hypophysial-gonadal system. This investigation was supported by the Deutsche Forschungsgemeinschaft, Bonn, FRG.  相似文献   

20.
Rapid progress has been recorded recently in the understanding of the role of neuro-transmitters and neuropeptides in the control of reproduction and on their apparent potential in the regulation of fertility. Peptides, as well as monoamines, are important in the control of lutinizing hormone releasing hormone and gonadotropin release. The input from brainstem noradrenergic neurons as well as dopamine mediated stimulated release of lutinizing hormone. In addition considerable evidence exist for the occurrence of a specific follicle stimulating hormone-releasing factor. A large number of brain peptides affect the secretion of lutinizing hormone releasing hormone and the endogenous opioid peptides appear to have a physiologically important function in restraining the influence on lutinizing hormone releasing hormone release under most circumstances. Vasoactive intestinal peptide and substanceP stimulate whereas cholecystokinin, neurotensin, gastrin, secretin, somatostatin α-melanosite stimulating hormone and vasotocin inhibit lutinizing hormone release. Of the inhibitory peptides, cholecystokinin and arg-vasotocin are the most potent. Inhibin injected into the ventricle selectively suppresses follicle stimulating hormone release by a hypothalamic action. Thus the control of gonadotropin release is complex and a number of aminergic and peptidergic transmitters are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号