首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wollemi pine, Wollemia nobilis (Araucariaceae), was discovered in 1994 as the only extant member of the genus, previously known only from the fossil record. With fewer than 100 trees known from an inaccessible canyon in southeastern Australia, it is one of the most endangered tree species in the world. We conducted a comparative population genetic survey at allozyme, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) loci in W. nobilis, Araucaria cunninghamii and Agathis robusta - representatives of the two sister genera. No polymorphism was detected at 13 allozyme loci, more than 800 AFLP loci or the 20 SSR loci screened in W. nobilis. In Ag. robusta only one of 12 allozyme loci, five of 800 AFLP loci and none of the 15 SSR loci were variable. For A. cunninghamii, 10 of > 800 AFLP loci and five of 20 SSR loci were variable. Thus low genetic diversity characterizes all three species. While not ruling out the existence of genetic variation, we conclude that genetic diversity is exceptionally low in the Wollemi pine. To our knowledge this is the most extreme case known in plants. We conclude that the combination of small population effects, clonality and below-average genetic variation in the family are probable contributing factors to the low diversity. The exceptionally low genetic diversity of the Wollemi pine, combined with its known susceptibility to exotic fungal pathogens, reinforces current management policies of strict control of access to the pines and secrecy of the pine locations.  相似文献   

2.
In the present study we investigated the genetic structure and genetic diversity of Pinus sylvestris populations in Bulgaria using chloroplast microsatellite markers and terpene analysis. We were interested in addressing the following questions: (1) can population structure in Scots pine be detected via chloroplast microsatellites markers and terpenes; (2) are there differences in population differentiation between the two analyses; and (3) how are the patterns related to geographic distances. Twelve provenances were chosen throughout the species' range in Bulgaria. Following DNA extraction, chloroplast microsatellite (cpSSR) loci were surveyed using six primer pairs. Between 4 to 8 size variants were identified at each locus. A total of 35 size variants at the six loci were identified, 11 occurring at low frequencies (<1%). They were combined in 134 different haplotypes, of which seven represent 1/3 of the genetic structure. AMOVA analysis revealed that 10.99% of the variation was found among populations, while 89.01% was expressed within populations. The cpSSR analysis divided Scots pine populations into two groups, the first represented by populations located in the south-western part of the Rhodopes and Pirin mountains, while the second group is located in the northeast of Rhodopes and Rila mountains. Terpene analysis revealed that on average, 53% of the monoterpene pool in P. sylvestris was accounted for by -pinene (range 47–59%) followed by β-pinene (range 6–12%). The presence of two distinct groups is weekly consistent with physical distances between populations, similar significant correlation between genetic distance determined by chloroplast microsatellites analysis and chemotype distance (determined by terpenes) was observed. Our results suggest that the structural pattern of genetic diversity of cpDNA in Scots pine populations is the consequence of historical biogeographic processes.  相似文献   

3.
利用两个核基因座位C3HGI, 对重叠分布于中国东南部的两个松属(Pinus)物种马尾松(P. massoniana)和黄山松(P. hwangshanensis)的22个群体88个个体进行了遗传多样性和种间分化模式研究。在这两个核基因座位上, 两种植物都表现出较低的核苷酸多样性水平(马尾松πsil = 0.001 71; 黄山松πsil = 0.003 40), 但是马尾松要显著低于黄山松; 在种内分化水平上, 马尾松的种内遗传分化也明显低于黄山松(马尾松FST = 0.059; 黄山松FST = 0.339)。这可能是由于黄山松的海拔分布高于马尾松, 而高海拔分布使黄山松的分布区域更加片段化, 促使其形成较高的种内遗传多样性和遗传分化。分子变异分析(AMOVA)发现, 两物种基于两个核基因座位的种间差异为48.86%, 而GI基因座位上的种间差异明显高于C3H座位(GI: 77.24%, C3H: 20.48%), 同时, 基因谱系显示两物种的共享单倍型仅在C3H座位上存在。结合这两个基因的功能, 推测GI基因可能在物种形成过程中受到了一定的选择压力, 因为GI基因参与调控植物的开花时间, 而C3H与木质素表达水平的调控有关。不同的选择压力使得GI的进化速度相对较快, 从而加速了黄山松和马尾松的物种分化。  相似文献   

4.
Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity and structure among populations at 15 sites (e.g., provenances) across the native range of western white pine. The level of genetic diversity was different among 15 populations tested using 66 polymorphic AFLP loci. Nei’s gene diversity (H E) at the population level ranged from 0.187 to 0.316. Genetic differentiation (G ST) indicated that 20.1% of detected genetic variation was explained by differences among populations. In general, populations below 45oN latitude exhibited a higher level of genetic diversity than higher latitude populations. Genetic distance analysis revealed two major clades between northern and southern populations, but other well-supported relationships are also apparent within each of the two clades. The complex relationships among populations are likely derived from multiple factors including migration, adaptation, and multiple glacial refugia, especially in higher latitudes. Genetic diversity and structure revealed by this study will aid recognition and selection of western white pine populations for species management and conservation programs, especially in consideration of current and future climate changes.  相似文献   

5.
Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments.  相似文献   

6.
To examine the relationship between gene conversion and reciprocal exchange at an endogenous chromosomal locus, we developed a reversion assay in a thymidine kinase deficient mutant, TX545, derived from the human lymphoblastoid cell line TK6. Selectable revertants of TX545 can be generated through interchromosomal gene conversion at the site of inactivating mutations on each tk allele or by reciprocal exchange that alters the linkage relationships of inactivating polymorphisms within the tk locus. Analysis of loss of heterozygosity (LOH) at intragenic polymorphisms and flanking microsatellite markers was used to initially evaluate allelotypes in TK(+) revertants for patterns associated with either gene conversion or crossing over. The linkage pattern in a subset of convertants was then unambiguously established, even in the event of prereplicative recombinational exchanges, by haplotype analysis of flanking microsatellite loci in tk(-/-) LOH mutants collected from the tk(+/-) parental convertant. Some (7/38; 18%) revertants were attributable to easily discriminated nonrecombinational mechanisms, including suppressor mutations within the tk coding sequence. However, all revertants classified as a recombinational event (28/38; 74%) were attributed to localized gene conversion, representing a highly significant preference (P < 0.0001) over gene conversion with associated reciprocal exchange, which was never observed.  相似文献   

7.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

8.
Social heterosis is when individuals in groups or neighbourhoods receive a mutualistic benefit from across‐individual genetic diversity. Although it can be a viable evolutionary mechanism to maintain allelic diversity at a given locus, its efficacy at maintaining genome‐wide diversity is in question when multiple loci are being simultaneously selected. Therefore, we modelled social heterosis in a population of haploid genomes of two‐ or three‐linked loci. With such linkages, social heterosis decreases gametic diversity, but maintains allelic diversity. Genomes tend to survive as complimentary pairs, with alternate alleles at each locus (e.g. the pair AbC and aBc). The outcomes of selection appear similar to fitness epistasis but are novel in the sense that phenotypic interactions occur across rather than within individuals. The model’s results strongly suggest that strong linkage across gene loci actually increases the probability that social heterosis maintains significant genetic diversity at the level of the genome.  相似文献   

9.
Cutter AD 《Genetics》2008,178(3):1661-1672
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.  相似文献   

10.
Genetic variation is generally considered a prerequisite for adaptation to new environmental conditions. Thus the discovery of genetically depauperate but geographically widespread species is unexpected. We used 12 paternally inherited chloroplast microsatellites to estimate population genetic variation across the full range of an emblematic circum-Mediterranean conifer, stone pine (Pinus pinea L.). The same chloroplast DNA haplotype is fixed in nearly all of the 34 investigated populations. Such a low level of variation is consistent with a previous report of very low levels of diversity at nuclear loci in this species. Stone pine appears to have passed through a severe and prolonged demographic bottleneck, followed by subsequent natural- and human-mediated dispersal across the Mediterranean Basin. No other abundant and widespread plant species has as little genetic diversity as P. pinea at both chloroplast and nuclear markers. However, the species harbors a nonnegligible amount of variation at adaptive traits. Thus a causal relationship between genetic diversity, as measured by marker loci, and the evolutionary precariousness of a species, cannot be taken for granted.  相似文献   

11.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

12.
Nucleotide polymorphism in Scots pine (Pinus sylvestris) was studied in the gene encoding phenylalanine ammonia-lyase (Pal, EC 4.3.1.5). Scots pine, like many other pine species, has a large current population size. The observed levels of inbreeding depression suggest that Scots pine may have a high mutation rate to deleterious alleles. Many Scots pine markers such as isozymes, RFLPs, and microsatellites are highly variable. These observations suggest that the levels of nucleotide variation should be higher than those in other plant species. A 2,045-bp fragment of the pal1 locus was sequenced from five megagametophytes each from a different individual from each of four populations, from northern and southern Finland, central Russia, and northern Spain. There were 12 segregating sites in the locus. The synonymous site overall nucleotide diversity was only 0.0049. In order to compare pal1 with other pine genes, sequence was obtained from two alleles of 11 other loci (total length 4,606 bp). For these, the synonymous nucleotide diversity was 0.0056. These estimates are lower than those from other plants. This is most likely because of a low mutation rate, as estimated from between-pine species synonymous site divergence. In other respects, Scots pine has the characteristics of a species with a large effective population. There was no linkage disequilibrium even between closely linked sites. This resulted in high haplotype diversity (14 different haplotypes among 20 sequences). This could also give rise to high per locus diversity at the protein level. Divergence between populations in the main range was low, whereas an isolated Spanish population had slightly lower diversity and higher divergence than the remaining populations.  相似文献   

13.
Camels are an integral and essential component of the Saudi Arabian heritage. The genetic diversity and population genetic structure of dromedary camels are poorly documented in Saudi Arabia so this study was carried out to investigate the genetic diversity of both local and exotic camel breeds. The genetic diversity was evaluated within and among camel populations using 21 microsatellite loci. Hair and blood samples were collected from 296 unrelated animals representing 4 different local breeds, namely Majaheem (MG), Maghateer (MJ), Sofr (SO), and Shaul (SH), and two exotic breeds namely Sawahli (SL) and Somali (SU). Nineteen out of 21 microsatellite loci generated multi-locus fingerprints for the studied camel individuals, with an average of 13.3 alleles per locus. Based on the genetic analyses, the camels were divided into two groups: one contained the Saudi indigenous populations (MG, MJ, SH and SO) and the other contained the non-Saudi ones (SU and SL). There was very little gene flow occurring between the two groups. The African origin of SU and SL breeds may explain their close genetic relationship. It is anticipated that the genetic diversity assessment is important to preserve local camel genetic resources and develop future breeding programs to improve camel productivity.  相似文献   

14.
Leaf trichomes may serve several biological functions including protection against herbivores, drought, and UV radiation; and their adaptive value can be expected to vary among environments. The perennial, self-incompatible herb Arabidopsis lyrata is polymorphic for trichome production, and occurs in a glabrous and a trichome-producing form. Controlled crosses indicate that the polymorphism is governed by a single gene, with trichome production being dominant. We examined the hypothesis that trichome production is subject to divergent selection (i.e., directional selection favoring different phenotypes in different populations) by comparing patterns of variation at the locus coding for glabrousness and at eight putatively neutral isozyme loci in Swedish populations of A. lyrata. The genetic diversity (He) and allele number at isozyme loci tended to increase with population size and decreased with latitude of origin, whereas genetic diversity at the locus coding for glabrousness did not vary with population size and increased with latitude of origin. The degree of genetic differentiation at the glabrousness locus was much higher than that at isozyme loci. Genetic identity at isozyme loci was negatively related to geographic distance, suggesting isolation by distance. In contrast, there was no significant correlation between genetic identity at the glabrousness locus and at isozyme loci. The results are consistent with the hypothesis that divergent selection contributes to population differentiation in trichome production in A. lyrata.  相似文献   

15.
Mathematical consequences of the genealogical species concept   总被引:16,自引:0,他引:16  
A genealogical species is defined as a basal group of organisms whose members are all more closely related to each other than they are to any organisms outside the group ("exclusivity"), and which contains no exclusive group within it. In practice, a pair of species is so defined when phylogenies of alleles from a sample of loci shows them to be reciprocally monophyletic at all or some specified fraction of the loci. We investigate the length of time it takes to attain this status when an ancestral population divides into two descendant populations of equal size with no gene exchange, and when genetic drift and mutation are the only evolutionary forces operating. The number of loci used has a substantial effect on the probability of observing reciprocal monophyly at different times after population separation, with very long times needed to observe complete reciprocal monophyly for a large number of loci. In contrast, the number of alleles sampled per locus has a relatively small effect on the probability of reciprocal monophyly. Because a single mitochondrial or chloroplast locus becomes reciprocally monophyletic much faster than does a single nuclear locus, it is not advisable to use mitochondrial and chloroplast DNA to recognize genealogical species for long periods after population divergence. Using a weaker criterion of assigning genealogical species status when more than 50% of sampled nuclear loci show reciprocal monophyly, genealogical species status depends much less on the number of sampled loci, and is attained at roughly 4-7 N generations after populations are isolated, where N is the historically effective population size of each descendant. If genealogical species status is defined as more than 95% of sampled nuclear loci showing reciprocal monophyly, this status is attained after roughly 9-12 N generations.  相似文献   

16.
Genomic imprinting, where the effects of alleles depend on their parent-of-origin, can be an important component of the genetic architecture of complex traits. Although there has been a rapidly increasing number of studies of genetic architecture that have examined imprinting effects, none have examined whether imprinting effects depend on genetic background. Such effects are critical for the evolution of genomic imprinting because they allow the imprinting state of a locus to evolve as a function of genetic background. Here we develop a two-locus model of epistasis that includes epistatic interactions involving imprinting effects and apply this model to scan the mouse genome for loci that modulate the imprinting effects of quantitative trait loci (QTL). The inclusion of imprinting leads to nine orthogonal forms of epistasis, five of which do not appear in the usual two-locus decomposition of epistasis. Each form represents a change in the imprinting status of one locus across different classes of genotypes at the other locus. Our genome scan identified two different locus pairs that show complex patterns of epistasis, where the imprinting effect at one locus changes across genetic backgrounds at the other locus. Thus, our model provides a framework for the detection of genetic background-dependent imprinting effects that should provide insights into the background dependence and evolution of genomic imprinting. Our application of the model to a genome scan supports this assertion by identifying pairs of loci that show reciprocal changes in their imprinting status as the background provided by the other locus changes.  相似文献   

17.
In natural populations, mating between relatives can have important fitness consequences due to the negative effects of reduced heterozygosity. Parental level of inbreeding or heterozygosity has been also found to influence the performance of offspring, via direct and indirect parental effects that are independent of the progeny own level of genetic diversity. In this study, we first analysed the effects of parental heterozygosity and relatedness (i.e. an estimate of offspring genetic diversity) on four traits related to offspring viability in great tits (Parus major) using 15 microsatellite markers. Second, we tested whether significant heterozygosity–fitness correlations (HFCs) were due to ‘local’ (i.e. linkage to genes influencing fitness) and/or ‘general’ (genome‐wide heterozygosity) effects. We found a significant negative relationship between parental genetic relatedness and hatching success, and maternal heterozygosity was positively associated with offspring body size. The characteristics of the studied populations (recent admixture, polygynous matings) together with the fact that we found evidence for identity disequilibrium across our set of neutral markers suggest that HFCs may have resulted from genome‐wide inbreeding depression. However, one locus (Ase18) had disproportionately large effects on the observed HFCs: heterozygosity at this locus had significant positive effects on hatching success and offspring size. It suggests that this marker may lie near to a functional locus under selection (i.e. a local effect) or, alternatively, heterozygosity at this locus might be correlated to heterozygosity across the genome due to the extensive ID found in our populations (i.e. a general effect). Collectively, our results lend support to both the general and local effect hypotheses and reinforce the view that HFCs lie on a continuum from inbreeding depression to those strictly due to linkage between marker loci and genes under selection.  相似文献   

18.
东北春大豆样本的代表性及其SSR位点的遗传多样性分析   总被引:9,自引:0,他引:9  
从3226份东北春大豆总体中选择283份春大豆种质,用质量性状和数量性状进行检测,对总体的代表性为80%.利用筛选出61对SSR核心引物对具代表性的东北春大豆样本进行分析,共检测到534个等位变异,平均每个位点的等位变异为8.75个,变幅为2~16个;遗传多样性指数变化范围在0.406~0.886,平均为0.704;东北春大豆样本在大多数位点上有优势等位变异,从而降低了其遗传多样性.其中35份种质具有特异等位变异,分布在29个位点上;各个位点上分化系数均较小,遗传多样性分化程度较低.东北春大豆中3个省种质的共有等位变异较多,以吉林省和辽宁省种质的遗传多样性表现较为一致,均高于黑龙江省种质的遗传多样性.地方品种的遗传多样性高于育成品种.东北春大豆种质资源的遗传多样性分布特点为有目的选择杂交亲本拓宽遗传基础以培育新品种提供了理论依据.  相似文献   

19.
Homologous recombination accomplishes the exchange of genetic information between two similar or identical DNA duplexes. It can occur either by gene conversion, a process of unidirectional genetic exchange, or by reciprocal crossing over. Homologous recombination is well known for its role in generating genetic diversity in meiosis and, in mitosis, as a DNA repair mechanism. In the immune system, the evidence suggests a role for homologous recombination in Ig gene evolution and in the diversification of Ab function. Previously, we reported the occurrence of homologous recombination between repeated, donor and recipient alleles of the Ig H chain mu gene C (Cmu) region residing at the Ig mu locus in mouse hybridoma cells. In this study, we constructed mouse hybridoma cell lines bearing Cmu region heteroalleles to learn more about the intrachromosomal homologous recombination process. A high frequency of homologous recombination (gene conversion) was observed for markers spanning the entire recipient Cmu region, suggesting that recombination might initiate at random sites within the Cmu region. The Cmu region heteroalleles were equally proficient as either conversion donors or recipients. Remarkably, when the same Cmu heteroalleles were tested for recombination in ectopic genomic positions, the mean frequency of gene conversion was reduced by at least 65-fold. These results are consistent with the murine IgH mu locus behaving as a hot spot for intrachromosomal homologous recombination.  相似文献   

20.
Bahr A  Wilson AB 《Gene》2012,497(1):52-57
Gene conversion, the unidirectional exchange of genetic material between homologous sequences, is thought to strongly influence patterns of genetic diversity. The high diversity of major histocompatibility complex (MHC) genes in many species is thought to reflect a long history of gene conversion events both within and among loci. Theoretical work suggests that intra- and interlocus gene conversion leave characteristic signatures of nucleotide diversity, but empirical studies of MHC variation have rarely been able to analyze the effects of conversion events in isolation, due to the presence of multiple gene copies in most species. The potbellied seahorse (Hippocampus abdominalis), a species with a single copy of the MH class II beta-chain gene (MHIIb), provides an ideal system in which to explore predictions on the effects of intralocus gene conversion on patterns of genetic diversity. The genetic diversity of the MHIIb peptide binding region (PBR) is high in the seahorse, similar to other vertebrate species. In contrast, the remainder of the gene shows a total absence of synonymous variation and low levels of intronic sequence diversity, concentrated in 3 short repetitive regions and 1-12 SNPs per intron. The distribution of substitutions across the gene results in a patchwork pattern of shared polymorphism between otherwise divergent sequences. The pattern of nucleotide diversity observed in the seahorse MHIIb gene is congruent with theoretical expectations for intralocus gene conversion, indicating that this evolutionary mechanism has played an important role in MHC gene evolution, contributing to both the high diversity in the PBR and the low diversity outside this region. Neutral variation at this locus may be further reduced due to biases in nucleotide composition and functional constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号