首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

2.
An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.  相似文献   

3.
Transmembrane signals generated following mAb binding to CD19, CD20, CD39, CD40, CD43, Leu-13 Ag, and HLA-D region gene products induced rapid and strong homotypic adhesion in a panel of human B cell lines. Lower levels of adhesion were also observed after engagement of CD21, CD22, and CD23. Adhesion induced by mAb binding to these Ag was identical with respect to the kinetics of adhesion and the morphology of the resulting cellular aggregates, and was distinct from PMA-induced adhesion in both of these properties. Adhesion was not observed in response to mAb binding to MHC class I, CD24, CD38, CD44, CD45RA, or CD72. In contrast to B cell lines, homotypic adhesion was not induced in two pre-B cell lines, in spite of their high level expression of CD19 and HLA-D. Adhesion induced by suboptimal stimulation through these surface Ag or by PMA was mediated primarily through LFA-1 and ICAM-1. However, optimal stimulation through CD19, CD20, CD39, CD40, and HLA-D induced strong homotypic adhesion that was not blocked by anti-LFA-1 mAb. This alternate pathway of adhesion was also observed in LFA-1-deficient cell lines and in the presence of EDTA, suggesting that adhesion was not mediated by integrins. Adhesion in response to engagement of cell-surface Ag was unaffected by H7 or genestein, but was significantly inhibited by staurosporine, and was completely ablated by sphingosine and herbimycin. These studies indicate that engagement of multiple B cell-surface molecules initiates a signal transduction cascade that involves tyrosine kinases but not protein kinase C, and which leads to homotypic adhesion. Furthermore, adhesion was mediated by at least two distinct cell-surface adhesion receptors: LFA-1/ICAM-1 and a heretofore unknown adhesion receptor.  相似文献   

4.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

5.
6.
To identify the cellular receptors and other cell surface molecules playing essential roles in the transmission of human T-cell leukemia virus type 1 (HTLV-1), we have been isolating monoclonal antibodies (mAbs) that are capable of inhibiting HTLV-1-induced syncytium formation. In the present study, we isolated two mAbs, H11 (IgM) and H14 (IgG1), inhibitory to syncytium formation in the coculture of TOM-1 or C91/PL (both HTLV-1-positive human T-cell lines) and MOLT-4/8 (HTLV-1-negative human T-cell line) by immunizing the membrane fraction of human osteosarcoma line HOS. By immunoprecipitation and immunoblotting, H11 and H14 were found to be specific for MHC class I heavy chain and beta 2-microglobulin (beta 2 M), respectively. Among the four commercially obtained mAbs, two mAbs for MHC class I antigen and two mAbs to beta 2 M, one mAb to MHC class I antigen and one mAb to beta 2 M were also found to be inhibitory to the syncytium formation. The functional comparison of these mAbs revealed that the syncytium-inhibitory mAbs induced strong homotypic cell adhesion particularly in the HTLV-1-positive T-cell lines. This cell adhesion was dependent on temperature, energy metabolism, and microfilament function but not on the activity of protein kinase C or divalent cations. These results suggest a novel type of LFA-1-independent cell adhesion induced by signal transduction via MHC class I antigen.  相似文献   

7.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

8.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

9.
Activation of calpains by calcium flux leading to talin cleavage is thought to be an important process of LFA-1 activation by inside-out signalling. Here, we tested the effects of the calcium ionophore ionomycin and calpain inhibitor calpeptin on LFA-1-mediated adhesion of a T cell hybridoma line, cytotoxic T cells and primary resting T cells. Ionomycin activated LFA-1-mediated adhesion of all three types of T cells, and calpeptin inhibited the effects of ionomycin. However, calpeptin also inhibited activation of LFA-1 by PMA, which did not induce calcium flux. Cleavage of talin was undetectable in ionomycin-treated T cells. Furthermore, treatment with ionomycin and calpeptin induced apoptosis of T cells. Inhibitors of phosphatidyl Inositol-3 kinase inhibited activation of LFA-1 by ionomycin, but not by PMA, whereas the protein kinase C inhibitor inhibited the effects of PMA, but not ionomycin. Thus, activation of LFA-1 by ionomycin is independent of calpain-mediated talin cleavage.  相似文献   

10.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

11.
To analyze the binding requirements of LFA-1 for its two most homologous ligands, ICAM-1 and ICAM-3, we compared the effects of various LFA-1 activation regimes and a panel of anti-LFA-1 mAbs in T cell binding assays to ICAM-1 or ICAM-3 coated on plastic. These studies demonstrated that T cell binding to ICAM-3 was inducible both from the exterior of the cell by Mn2+ and from the interior by an agonist of the "inside-out" signaling pathway. T cells bound both ICAM ligands with comparable avidity. A screen of 29 anti-LFA-1 mAbs led to the identification of two mAbs specific for the alpha subunit of LFA-1 which selectively blocked adhesion of T cells to ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 and 122.2A5, exhibited identical blocking properties in a more defined adhesion assay using LFA-1 transfected COS cells binding to immobilized ligand. Blocking was not due to a steric interference between anti-LFA-1 mAbs and N-linked carbohydrate residues present on ICAM-3 but not ICAM-1. The epitopes of mAbs YTH81.5 and 122.2A5 were shown to map to the I domain of the LFA-1 alpha subunit. A third I domain mAb, MEM-83, has been previously reported to uniquely activate LFA-1 to bind ICAM-1 (Landis, R. C., R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 120:1519-1527). We now show that mAb MEM-83 is not able to stimulate binding of T cells to ICAM-3 over a wide concentration range. Failure to induce ICAM-3 binding by mAb MEM-83 was not due to a blockade of the ICAM-3 binding site on LFA-1. This study has demonstrated that two sets of functionally distinct mAbs recognizing epitopes in the I domain of LFA-1 are able to exert differential effects on the binding of LFA-1 to its ligands ICAM-1, and ICAM-3. These results suggest for the first time that LFA-1 is capable of binding these two highly homologous ligands in a selective manner and that the I domain plays a role in this process.  相似文献   

12.
13.
Engagement of the surface Ig receptor with anti-IgM antibodies stimulates murine B lymphocytes to markedly increase their expression of the cell adhesion molecules ICAM-1 and LFA-1. Stimulated B cells display increased homotypic adhesiveness and form spontaneous heterotypic conjugates with T lymphocytes. This latter T-B cell interaction is further enhanced if T cells have been previously activated with phorbol esters. In all cases, the formation of cell-cell conjugates is dependent on LFA-1-ICAM-1-mediated interactions as assessed in mAb blocking experiments. B lymphocytes stimulated with anti-IgM display a marked increase in binding to ICAM-1-transfected L cells. This cell-cell interaction is inhibited by anti-LFA-1 mAb binding to the B lymphocyte. Together, these results demonstrate that there is an induction of both ICAM-1 and LFA-1 on stimulated B cells and a corresponding increase in the adhesiveness of these cells. These findings suggest that Ag binding to the surface Ig receptor could prepare a B lymphocyte for subsequent interaction with a T lymphocyte. This provides insight into how efficient T-B collaboration may occur between very infrequent Ag-specific lymphocytes.  相似文献   

14.
Lymphocyte adhesion to target cells is mediated, in part, by the interaction of lymphocyte function-associated Ag-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1). Cells of the B cell line, JY, express both coreceptors and have been used as a model for intercellular adhesion mediated by these molecules. Elevation of the intracellular cAMP concentration ([cAMP]i), by any of several reagents, for periods as brief as 30 min, led to enhanced intercellular adhesion in a concentration dependent manner 5 to 8 h later. Two protein kinase A inhibitors, KT5720 and H-89, but not the protein kinase C inhibitor calphostin C, blocked the effects of elevated [cAMP]i. These data suggest a role for protein kinase A in this response. The adhesion augmented by increased [cAMP]i was due to LFA-1/ICAM-1 interactions between cells because it was blocked by either anti-LFA-1 or anti-ICAM-1 mAb. Elevated [cAMP]i induced cell surface patching of LFA-1, but not ICAM-1, and this redistribution preceded intercellular adhesion. Finally, redistribution of LFA-1 was not mediated by the cytoskeleton. These results suggest a model in which transient activation of protein kinase A results in increased local concentration of LFA-1 at the cell surface and in augmented long term adhesion mediated by this integrin.  相似文献   

15.
The functional activity of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes can be regulated by T-cell receptor (TCR) stimulation and pharmacologic agents. It was of interest to determine if functionally active LFA-1 could be reconstituted on a nonhematopoietic, LFA-1-negative cell line. We report the expression of LFA-1 and diethylaminoethyl (DEAE) Mac-1 alpha beta heterodimers on the cell surface of a fibroblastoid cell line, COS, by DEAE dextran cotransfection of the alpha and beta subunit cDNAs. Immunoprecipitation studies demonstrated that the alpha and beta subunit was expressed in heterodimers. The alpha or beta subunit was expressed at lower levels after transfection with the alpha or beta subunit cDNA alone. Cotransfection of the alpha and beta subunit cDNAs, but not transfection of alpha or beta alone, was sufficient to reconstitute intercellular adhesion molecule-1 (ICAM-1) binding activity. Consistent with this observation, LFA-1 on the fibroblastoid cells possesses the activation epitope defined by the L16 monoclonal antibody (mAb). This epitope marks the conversion of LFA-1 from the low to high avidity state on peripheral blood T lymphocytes (PBLs) and is constitutively present on activated cell lines. In contrast to LFA-1 on leukocytes, the functional activity of LFA-1 on fibroblastoid cells was not influenced by phorbol ester treatment. Furthermore, the use of agents that interfere with intracellular signaling, a protein kinase C inhibitor, cAMP analogue, or the combination of a phosphodiesterase inhibitor and adenyl cyclase activator, did not affect the binding of COS cells expressing LFA-1 to purified ICAM-1.  相似文献   

16.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

17.
The integrin surface molecule termed lymphocyte functional antigen-1 (LFA-1), and its physiological ligand intercellular adhesion molecule-1 (ICAM-1), have been proven to play a relevant role in several immune reactions where cell-to-cell contact is required: these reactions include allogeneic mixed lymphocyte reaction (MLR) and direct cytotoxicity. In the present study, we show that monoclonal antibodies (mAbs) directed to LFA-1 as well as to ICAM-1 molecules are able to inhibit T cell proliferation in autologous MLR (AMLR). Such an in vitro reaction is generally considered a functional model of Ia-mediated immunocompetent cell cooperation, and is impaired in several pathological conditions. It is noteworthy that the LFA-1 molecule is largely represented on the T cell surface, whereas ICAM-1 is poorly expressed on resting T cells: autologous stimulation slightly increases ICAM-1 expression. Pretreatment studies indicate that the inhibitory effect of anti-ICAM-1 mAb on T cell proliferation in AMLR is exerted on responder T cells.  相似文献   

18.
The inside-out signaling involved in the activation of LFA-1-mediated cell adhesion is still poorly understood. Here we examined the role of the SH2-containing inositol phosphatase (SHIP), a major negative regulator of intracellular signaling, in this process. Wild-type SHIP and a phosphatase-deficient mutant SHIP were overexpressed in the murine myeloid cell line, DA-ER, and the effects on LFA-1-mediated cell adhesion to ICAM-1 (CD54) were tested. Overexpression of wild-type SHIP significantly enhanced cell adhesion to immobilized ICAM-1, and PMA, IL-3, or erythropoietin further augmented this adhesion. In contrast, phosphatase dead SHIP had no enhancing effects. Furthermore, PMA-induced activation of LFA-1 on DA-ER cells overexpressing wild-type SHIP was dependent on protein kinase C but independent of mitogen-activated protein kinase activation, whereas cytokine-induced activation was independent of protein kinase C and mitogen-activated protein kinase activation but required phosphatidylinositol-3 kinase activation. These results suggest that SHIP may regulate two distinct inside-out signaling pathways and that the phosphatase activity of SHIP is essential for both of them.  相似文献   

19.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

20.
Engagement of MHC class II (Ia) molecules on B cells induces tyrosine phosphorylation, phosphoinositide turnover, elevation of intracellular calcium concentrations, and a rise in cAMP levels. However, a role for these biochemical signals in mediating functional responses induced by Ia ligands remains largely undefined. In this study, we utilized the induction of B cell adhesion by Ia ligands to demonstrate a role for signals transduced via Ia molecules in the generation of a functional response. Ia ligands that induced B cell aggregation induced tyrosine phosphorylation, whereas Ia ligands that did not induce B cell aggregation failed to induce any detectable tyrosine phosphorylation. Ia-induced B cell aggregation and tyrosine phosphorylation were inhibited by genistein and by herbimycin A, inhibitors of tyrosine kinases (PTK). Sphingosine and calphostin C, inhibitors of protein kinase C (PKC), also inhibited Ia-induced adhesion whereas HA1004, an inhibitor of cyclic nucleotide-dependent kinases, did not. Ia ligands induced both LFA-1-dependent and LFA-1-independent B cell adhesion. These two pathways of cell adhesion differed in their requirement for activation signals. PKC activation was sufficient for LFA-1-dependent adhesion, whereas LFA-1-independent adhesion required independent phosphorylation events mediated by PKC and by PTK. These results provide functional relevance for biochemical signals transduced via Ia molecules by demonstrating that Ia-induced B cell adhesion is mediated by the activation of PKC and by one or more PTK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号