首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Cannabinoid receptors are G-protein-coupled receptors comprised of seven transmembrane helices. We hypothesized that the extended helix of the receptor interacts differently with POPC bilayers due to the differing distribution of charged amino acid residues. To test this, hCB1(T377-E416) and hCB2(K278-H316) peptides were studied with 31P and 2H solid-state NMR spectroscopy by incorporating them into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine bilayers. Lipid affinities of the 40- and 39-residue peptides were analyzed on the basis of 31P and 2H spectral line shapes, order parameters, and T1 relaxation measurements of the POPC bilayers. Lipid headgroup perturbations were noticed in the 31P NMR spectra in the lipid/peptide mixtures when compared with the pure lipids. 2H order parameters were calculated from the quadrupolar splitting of the de-Paked 2H NMR spectra. At the top of the acyl chain, pure lipids had an average S(CD) approximately = 0.20, whereas S(CD) approximately = 0.16 and S(CD) approximately = 0.18 were found in the presence of hCB1(T377-E416) and hCB2(K278-H316), respectively. S(CD) values decreased in the central part of the acyl chains when compared to the pure POPC lipids, indicating a change in the dynamic properties of the lipid membrane in the presence of the cannabinoid peptides. R(1Z) vs S2(CD) plots exhibited a linear dependency with and without the peptides, with an increase in slope upon addition of the peptides to the POPC, indicating that the dynamics of the lipid bilayer is dominated by fast axially symmetric motion. This study provides insights into the interaction of cannabinoid peptides with the membrane bilayer by investigating the headgroup and acyl chain dynamics.  相似文献   

2.
Deuterium nuclear magnetic resonance (2H NMR) spectra from aqueous dispersions of phosphatidylcholines in which perdeuterated palmitic acid is esterified at the sn-1 position have several very useful features. The powder spectra show six well-resolved 90 degree edges which correspond to the six positions closest to the methyl end of the acyl chain. The spectral overlap inherent in the multiple powder pattern line shape of these dispersions can be removed by using a "dePaking" procedure [Bloom, M., Davis, J.H., & Mackay, A. (1981) Chem. Phys. Lett. 80, 198-202] which calculates the spectra that would result if the lipid bilayers were oriented in the magnetic field. This procedure produces six well-resolved doublets whose NMR properties can be observed without interference from the resonances of other labeled positions. The presence of a single double bond in the sn-2 chain increases the order of the saturated 16:0 sn-1 chain at every position in the bilayer compared with a saturated sn-2 chain at the same reduced temperature. Surprisingly, addition of five more double bonds to the sn-2 chain only slightly reduces the order of the 16:0 sn-1 chain at many positions in the bilayer compared with the single double bond. Calculating oriented spectra from a spin-lattice (T1) relaxation series of powder spectra allows one to obtain the T1 relaxation times of six positions on the acyl chain simultaneously. As an example of the utility of these molecules, we demonstrate that the dependence of the spin-lattice (T1) relaxation rate as a function of orientational order for two unsaturated phospholipids differs significantly from the corresponding fully saturated analogue. Interpreting this difference using current models of acyl chain dynamics suggests that the bilayers containing either of the two unsaturated phospholipids are significantly more deformable than bilayers made from the fully saturated phospholipid.  相似文献   

3.
Lu JX  Damodaran K  Blazyk J  Lorigan GA 《Biochemistry》2005,44(30):10208-10217
An 18-residue peptide, KWGAKIKIGAKIKIGAKI-NH(2) was designed to form amphiphilic beta-sheet structures when bound to lipid bilayers. The peptide possesses high antimicrobial activity when compared to naturally occurring linear antimicrobial peptides, most of which adopt an amphipathic alpha-helical conformation upon binding to the lipids. The perturbation of the bilayer by the peptide was studied by static (31)P and (2)H solid-state NMR spectroscopy using POPC and POPG/POPC (3/1) bilayer membranes with sn-1 chain perdeuterated POPC and POPG as the isotopic labels. (31)P NMR powder spectra exhibited two components for POPG/POPC bilayers upon addition of the peptide but only a slight change in the line shape for POPC bilayers, indicating that the peptide selectively disrupted the membrane structure consisting of POPG lipids. (2)H NMR powder spectra indicated a reduction in the lipid chain order for POPC bilayers and no significant change in the ordering for POPG/POPC bilayers upon association of the peptide with the bilayers, suggesting that the peptide acts as a surface peptide in POPG/POPC bilayers. Relaxation rates are more sensitive to the motions of the membranes over a large range of time scales. Longer (31)P longitudinal relaxation times for both POPG and POPC in the presence of the peptide indicated a direct interaction between the peptide and the POPG/POPC bilayer membranes. (31)P longitudinal relaxation studies also suggested that the peptide prefers to interact with the POPG phospholipids. However, inversion-recovery (2)H NMR spectroscopic experiments demonstrated a change in the relaxation rate of the lipid acyl chains for both the POPC membranes and the POPG/POPC membranes upon interaction with the peptide. Transverse relaxation studies indicated an increase in the spectral density of the collective membrane motion caused by the interaction between the peptide and the POPG/POPC membrane. The experimental results demonstrate significant dynamic changes in the membrane in the presence of the antimicrobial peptide and support a carpet mechanism for the disruption of the membranes by the antimicrobial peptide.  相似文献   

4.
The interaction of an antimicrobial peptide, MSI-78, with phospholipid bilayers has been investigated using atomic force microscopy, circular dichroism, and nuclear magnetic resonance (NMR). Binding of amphipathic peptide helices with their helical axis parallel to the membrane surface leads to membrane thinning. Atomic force microscopy of supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers in the presence of MSI-78 provides images of the membrane thinning process at a high spatial resolution. This data reveals that the membrane thickness is not reduced uniformly over the entire bilayer area. Instead, peptide binding leads to the formation of distinct domains where the bilayer thickness is reduced by 1.1 +/- 0.2 nm. The data is interpreted using a previously published geometric model for the structure of the peptide-lipid domains. In this model, the peptides reside at the hydrophilic-hydrophobic boundary in the lipid headgroup region, which leads to an increased distance between lipid headgroups. This picture is consistent with concentration-dependent 31P and 2H NMR spectra of MSI-78 in mechanically aligned DMPC bilayers. Furthermore, 2H NMR experiments on DMPC-d54 multilamellar vesicles indicate that the acyl chains of DMPC are highly disordered in the presence of the peptide as is to be expected for the proposed structure of the peptide-lipid assembly.  相似文献   

5.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

6.
Abu-Baker S  Lu JX  Chu S  Brinn CC  Makaroff CA  Lorigan GA 《Biochemistry》2007,46(42):11695-11706
2H and 15N solid-state NMR spectroscopic techniques were used to investigate both the side chain and backbone dynamics of wild-type phospholamban (WT-PLB) and its phosphorylated form (P-PLB) incorporated into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) phospholipid bilayers. 2H NMR spectra of site-specific CD3-labeled WT-PLB (at Leu51, Ala24, and Ala15) in POPC bilayers were similar under frozen conditions (-25 degrees C). However, significant differences in the line shapes of the 2H NMR spectra were observed in the liquid crystalline phase at and above 0 degrees C. The 2H NMR spectra indicate that Leu51, located toward the lower end of the transmembrane (TM) helix, shows restricted side chain motion, implying that it is embedded inside the POPC lipid bilayer. Additionally, the line shape of the 2H NMR spectrum of CD3-Ala24 reveals more side chain dynamics, indicating that this residue (located in the upper end of the TM helix) has additional backbone and internal side chain motions. 2H NMR spectra of both WT-PLB and P-PLB with CD3-Ala15 exhibit strong isotropic spectral line shapes. The dynamic isotropic nature of the 2H peak can be attributed to side chain and backbone motions to residues located in an aqueous environment outside the membrane. Also, the spectra of 15N-labeled amide WT-PLB at Leu51 and Leu42 residues showed only a single powder pattern component indicating that these two 15N-labeled residues located in the TM helix are motionally restricted at 25 degrees C. Conversely, 15N-labeled amide WT-PLB at Ala11 located in the cytoplasmic domain showed both powder and isotropic components at 25 degrees C. Upon phosphorylation, the mobile component contribution increases at Ala11. The 2H and 15N NMR data indicate significant backbone motion for the cytoplasmic domain of WT-PLB when compared to the transmembrane section.  相似文献   

7.
By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.  相似文献   

8.
Ouellet M  Doucet JD  Voyer N  Auger M 《Biochemistry》2007,46(22):6597-6606
We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.  相似文献   

9.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

10.
The interaction of the synthetic antimicrobial peptide P5 (KWKKLLKKPLLKKLLKKL-NH2) with model phospholipid membranes was studied using solid-state NMR and circular dichroism (CD) spectroscopy. P5 peptide had little secondary structure in buffer, but addition of large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) increased the β-sheet content to ~20%. Addition of negatively charged LUV, DMPC–dimyristoylphosphatidylglycerol (DMPG) 2:1, led to a substantial (~40%) increase of the α-helical conformation. The peptide structure did not change significantly above and below the phospholipid phase transition temperature. P5 peptide interacted differently with DMPC bilayers with deuterated acyl chains (d54-DMPC) and mixed d54-DMPC–DMPG bilayers, used to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC vesicles, P5 peptide had no significant interaction apart from slightly perturbing the upper region of the lipid acyl chain with minimum effect at the terminal methyl groups. By contrast, in the DMPC–DMPG vesicles the peptide increased disorder throughout the entire acyl chain of DMPC in the mixed bilayer. P5 promoted disordering of the headgroup of neutral membranes, observed by 31P NMR. However, no perturbations in the T 1 relaxation nor the T 2- values were observed at 30°C, although a slight change in the dynamics of the headgroup at 20°C was noticeable compared with peptide-free vesicles. However, the P5 peptide caused similar perturbations of the headgroup of negatively charged vesicles at both temperatures. These data correlate with the non-haemolytic activity of the P5 peptide against red blood cells (neutral membranes) while inhibiting bacterial growth (negatively charged membranes).  相似文献   

11.
We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. 31P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. 2H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core.  相似文献   

12.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state (31)P and (1)H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. (31)P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in (1)H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 degrees C and 24.0 degrees C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.  相似文献   

13.
Deuterium nuclear magnetic resonance (2H NMR) spectra of specifically head-group- and chain-deuterated ester- and ether-linked phosphatidylcholine bilayers were studied as a function of temperature over the range -33 to 50 degrees C. Head-group-deuterated dihexadecylphosphatidylcholine ([alpha-2H2]DHPC) bilayers yield line shapes and spin-lattice relaxation times similar to those observed for its ester-linked counterpart, dipalmitoylphosphatidylcholine ([alpha-2H2]DPPC), in the high-temperature ripple and L alpha bilayer phases. These results indicate the ether linkage has no effect on the dynamics or the orientational order at the alpha-C2H2 segment of the phosphocholine head group. At all temperatures, the 2H NMR spectra of chain-deuterated 1,2[1',1'-2H2]DHPC bilayers exhibit a reduced spectral width compared to 1,2[2',2'-2H2]DPPC bilayers. The most significant feature of the deuterated alkyl chain spectrum of DHPC at 45 degrees C is the observation of four separate quadrupolar splittings from the alpha-methylene segments of the alkyl chains, in comparison to the three quadrupolar splittings reported previously from the alpha-methylene segments of the acyl chains of DPPC. Spin-lattice relaxation experiments performed on DHPC suggest an assignment of the two smaller and the two larger quadrupolar splittings to separate alkyl chains, respectively. Low-temperature (T less than or equal to -20 degrees C) gel-phase spectra of deuterated head-group [alpha-2H2]DHPC remain an order of magnitude narrower than those observed for [alpha-2H2]DPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated by solid-state NMR. This fragment and the lipid composition were selected because they represent the minimum requirement for the fusogenic activity of the Alzheimer's peptide. The chemical shifts of alanine methyl isotropic carbon were determined by MAS NMR, and they clearly demonstrated that the major form of the peptide equilibrated in membrane is not in a helical conformation. (2)H NMR, performed with acyl chain deuterated POPC, demonstrated that there is no perturbation of the acyl chain's dynamics and of the lipid phase transition temperature. (2)H NMR, performed with alanine methyl-deuterated peptide demonstrated that the peptide itself has a limited mobility below and above the lipid phase transition temperature (molecular order parameter equal to 0.94). MAS (31)P NMR revealed a specific interaction with POPE polar head as seen by the enhancement of POPE phosphorus nuclei T(2) relaxation. All these results are in favor of a beta-sheet oligomeric association of the peptide at the bilayer interface, preferentially recruiting phosphatidyl ethanolamine polar heads.  相似文献   

15.
Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of a cationic amphiphilic peptide with pure DMPC membranes and with mixed bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS). The choline and serine headgroups were selectively deuteriated at the alpha and beta positions. The amphiphilic peptide, with 20 leucine residues in the hydrophobic core and two cationic hydrophilic lysine residues at each end, spanned the lipid bilayer. Although 2H NMR experiments using DMPC with perdeuteriated fatty acyl chains showed that the average order parameter of the hydrophobic region was not significantly modified by the incorporation of the amphiphilic peptide, for either DMPC or DMPC/DMPS (5:1) bilayers, large perturbations of the quadrupolar splittings of the choline and serine headgroups were observed. The results obtained with the DMPC headgroup suggest that the incorporation of the cationic peptide in both DMPC and DMPC/DMPS (5:1) bilayers leads to a structural perturbation directly related to the net charge on the membrane surface. The magnitude of the observed effect seems to be similar to those observed previously with other cationic molecules [Seelig, J., MacDonald, P.M., & Scherer, P.G. (1987) Biochemistry 26, 7535-7541]. Two of the three quadrupolar splittings of the PS headgroup exhibited large variations in the presence of the amphiphilic peptide, while the third one remained unchanged. Our data have led us to propose a model describing the influence of membrane surface charges on headgroup conformation. In this model, the surface charge is represented as a uniform charge distribution. The electric field due to the charges produces a torque which rotates the polar headgroups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have investigated the membrane interactions and dynamics of a 21-mer cytotoxic model peptide that acts as an ion channel by solid-state NMR spectroscopy. To shed light on its mechanism of membrane perturbation, 31P and 2H NMR experiments were performed on 21-mer peptide-containing bicelles. 31P NMR results indicate that the 21-mer peptide stabilizes the bicelle structure and orientation in the magnetic field and perturbs the lipid polar head group conformation. On the other hand, 2H NMR spectra reveal that the 21-mer peptide orders the lipid acyl chains upon binding. 15N NMR experiments performed in DMPC bilayers stacked between glass plates also reveal that the 21-mer peptide remains at the bilayer surface. 15N NMR experiments in perpendicular DMPC bicelles indicate that the 21-mer peptide does not show a circular orientational distribution in the bicelle planar region. Finally, 13C NMR experiments were used to study the 21-mer peptide dynamics in DMPC multilamellar vesicles. By analyzing the 13CO spinning sidebands, the results show that the 21-mer peptide is immobilized upon membrane binding. In light of these results, we propose a model of membrane interaction for the 21-mer peptide where it lies at the bilayer surface and perturbs the lipid head group conformation.  相似文献   

17.
13C and (31)P NMR spectra of a transmembrane peptide, [1-(13)C]Ala(14)-labeled A(6-34), of bacteriorhodopsin incorporated into dimyristoylphosphatidylcholine (DMPC) bilayer were recorded to clarify its dynamics and orientation in the lipid bilayer. This peptide is shown to take an alpha-helical form both in liquid crystalline and gel phases, as viewed from the conformation dependent (13)C chemical shifts. In addition, this peptide undergoes rapid rigid-body rotation about the helical axis at ambient temperature as viewed from the axially symmetric (13)C chemical shift anisotropy, whereas this symmetric anisotropy is changed to an asymmetric pattern at temperatures below 10 degrees C. We further incorporated the peptide into the spontaneously aligned DMPC bilayer to applied magnetic field, induced by dynorphin (dynorphin:DMPC =1:10), a heptadeca-opioid peptide with very high affinity to opioid receptor, in order to gain insight into its orientation in the bilayer. This magnetically aligned system turned out to be persistent even at 0 degrees C as viewed from (31)P NMR spectra of the lipid bilayer, after this peptide was incorporated into this system [A(6-34): dynorphin: DMPC = 4:10:100]. It was found from the (13)C NMR spectra of [1-(13)C]Ala(14) A(6-34) that the helical axis of A(6-34) is oriented parallel to the bilayer normal irrespective of the presence or absence of reorientation motion about the helical axis at a temperature above the lowered gel to liquid crystalline phase transition.  相似文献   

18.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

19.
Natural abundance 13C solid-state nuclear magnetic resonance spectroscopy was used to investigate the effect of the incorporation of cholesterol on the dynamics of dimyristoylphosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. In particular, the use of a combination of the cross-polarization and magic angle spinning techniques allows one to obtain very high resolution spectra from which can be distinguished several resonances attributed to the polar head group, the glycerol backbone, and the acyl chains of the lipid molecule. To examine both the fast and slow motions of the lipid bilayers, 1H spin-lattice relaxation times as well as proton and carbon spin-lattice relaxation times in the rotating frame were measured for each resolved resonance of DMPC. The use of the newly developed ramped-amplitude cross-polarization technique results in a significant increase in the stability of the cross-polarization conditions, especially for molecular groups undergoing rapid motions. The combination of T1 and T1 rho measurements indicates that the presence of cholesterol significantly decreases the rate and/or amplitude of both the high and low frequency motions in the DMPC bilayers. This effect is particularly important for the lipid acyl chains and the glycerol backbone region.  相似文献   

20.
We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, (2)H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S(mol)) and dynamics (T(1)) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a "transient site", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号