首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microsomal fraction from Vicia sativa L. cv. Septimane contains a cytochrome P-450-dependent lauric acid omega-hydroxylase that is inactivated in a time-dependent, pseudo-first-order manner when the microsomes are incubated with 11-dodecynoic acid. The rate constant for the inactivation is approximately 4.3-4.8 X 10(-3) s-1. In contrast, the olefinic analog 11-dodecenoic acid is primarily a time-independent inhibitor of the omega-hydroxylase. 1-Aminobenzotriazole, 3-phenoxy-1-propyne, and 3-(2,4-dichlorophenoxy)-1-propyne, mechanism-based inactivators of cinnamic acid 4-hydroxylase, and 9-decenoic acid, a mechanism-based inactivator of the lauric acid in-chain hydroxylase, are at best poor inactivators of the omega-hydroxylase. Conversely, cinnamic acid 4-hydroxylase is only slightly affected by concentrations of 11-dodecynoic acid that completely inactivate the omega-hydroxylase. 11-Dodecynoic acid is thus a potent, relatively specific, inactivator of the V. sativa lauric acid omega-hydroxylase.  相似文献   

2.
Microsomes from etiolated wheat (Triticum aestivum L. cv Etoile de Choisy) shoots catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation of lauric acid predominantly at the subterminal or (ω-1) position (65%). Minor amounts of 10-hydroxy- (31%) and 9-hydroxylaurate (4%) were also formed. The reaction was catalyzed by cytochrome P-450, since enzyme activity was strongly inhibited by tetcyclacis, carbon monoxide, and antibodies against NADPH-cytochrome c (P-450)-reductase. The apparent Km for lauric acid was estimated to be 8.5 ± 2.0 μm. Seed treatment with the safener naphthalic acid anhydride or treatment of seedlings with phenobarbital increased cytochrome P-450 content and lauric acid hydroxylase (LAH) activity of the microsomes. A combination of both treatments further stimulated LAH activity. A series of radiolabeled unsaturated lauric acid analogs (8-, 9-, 10-, and 11-dodecenoic acids) was used to explore the regioselectivity and catalytic capabilities of induced wheat microsomes. It has been found that wheat microsomes catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent epoxidation of sp2 carbons concurrently with hydroxylation at saturated positions. The regioselectivity of oxidation of the unsaturated substrates and that of lauric acid were similar. Preincubation of wheat microsomes with reduced nicotinamide adenine dinucleotide phosphate and 11-dodecenoic acid resulted in a partial loss of LAH activity.  相似文献   

3.
The terminal acetylenic analogue of lauric acid, 11-dodecynoic acid (11-DDYA), specifically inactivates hepatic cytochrome P-450 enzymes that catalyze omega- and omega-1-hydroxylation of lauric acid. The inactivation, as required for a suicidal process, is NADPH- and time-dependent and follows pseudo-first order kinetics. In contrast, 11-DDYA causes no measurable change in the spectroscopically-measured concentration of cytochrome P-450 or in the N-demethylation of benzphetamine or N-methyl p-chloroaniline. 10-Undecynoic acid is as effective a suicide substrate for fatty acid hydroxylases as 11-DDYA but 11-dodecenoic acid is much less effective. 11-DDYA is able to completely inhibit omega-hydroxylation but suppresses no more than 50% of omega-1-hydroxylation despite the fact that both activities are completely inactivated by 1-aminobenzotriazole. At least three hepatic cytochrome P-450 fatty acid hydroxylases, one omega-hydroxylase and two omega-1-hydroxylases, are required by these results. The construction of suicide substrates that specifically inactivate cytochrome P-450 fatty acid hydroxylases provides a new experimental probe of the physiological role of this process.  相似文献   

4.
The cell-free extract of a cytochrome P-450-producing fungus, Fusarium oxysporum, was found to catalyze the hydroxylation of fatty acids. Three product isomers were formed from a single fatty acid. The products from lauric acid were identified by mass-spectrometry as 9-, 10-, and 11-hydroxydodecanoic acids, and those from palmitic acid as 13-, 14-, and 15-hydroxyhexadecanoic acids. The ratio of the isomers formed was 50 : 36 : 14 in the case of laurate hydroxylation, and 37 : 47 : 16 in the case of palmitate. The reaction was dependent on both NADPH (or NADH) and molecular oxygen,and was strongly inhibited by carbon monoxide, menadione, or the antibody to purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450 with an apparent Kd of 0.3 mM. The hydroxylase activity together with cytochrome P-450 could be detected in both the soluble and microsome fractions, and the activity was almost proportional to the amount of cytochrome P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 is involved in the (omega-1)-, (omega-2)-, and (omega-3)-hydroxylation of fatty acids catalyzed by the cell-free extract of the fungus.  相似文献   

5.
The microsomes from rabbit intestinal mucosa which had been washed quickly and thoroughly with phenylmethylsulfonyl fluoride were found to catalyze the hydroxylation of fatty acids in the presence of NADPH and molecular oxygen. Myristic and palmitic acids were converted to the corresponding omega-and (omega-1)-hydroxy fatty acids, whereas lauric acid was converted only to 12-hydroxylauric acid, and capric acid, to 9-and 10-hydroxycapric acids together with an unknown polar acid.Among these fatty acids, both myristic and lauric acids appeared to be the most efficient substrates. The inhibition of the hydroxylation by SKF 525-A and carbon monoxide suggested that the activity depended upon cytochrome P-450. The specific activity of the fatty acid hydroxylation was almost constant along the small intestine, while the aminopyrine N-demethylation activity and the cytochrome P-450 content were highest at the proximal end of the intestine and progressively declined toward the caudal end. The cytochrome P-450 was solubilized from the intestinal microsomes and purified by 6-amino-n-hexyl Sepharose 4B chromatography. The partially purified cytochrome P-450 was active in fatty acid hydroxylation in combination with intestinal NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

6.
The effects of starvation on rat renal cytochrome P-450s were studied. The content of spectrally measured cytochrome P-450 in the renal microsomes of male rats increased 2-fold with 72 h starvation, but cytochrome b5 and NADPH-cytochrome P-450 reductase were not induced. 7-Ethoxycoumarin O-dealkylation and aniline hydroxylation activities of the renal microsomes of control male rats were very low but were induced 2.5-3-fold by 72 h starvation. Aminopyrine N-demethylation and lauric acid hydroxylation activities were induced 1.5-2-fold by 72 h starvation. The changes in catalytic activities suggested that the contents of individual cytochrome P-450s in the renal microsomes were altered by starvation. The contents of some cytochrome P-450s were measured by Western blotting. P450 DM (P450IIE1), a typical form of cytochrome P-450 induced by starvation in rat liver, was barely detected in rat kidney and was induced 2-fold by 72 h starvation. P450 K-5, a typical renal cytochrome P-450 and lauric acid hydroxylase, accounted for 81% of the spectrally measured cytochrome P-450 in the renal microsomes of control male rats and was induced 2-fold by 72 h starvation. P450 K-5 was not induced in rat kidney by treatment with chemicals such as acetone or clofibrate. The renal microsomes of male rats contained 6-times as much P450 K-5 as those of female rats. These results suggest that P450 K-5 is regulated by an endocrine factor.  相似文献   

7.
Wheat (Triticum aestivum L. cv Etoile de Choisy) microsomes catalyzed the cytochrome P-450-dependent oxidation of the herbicide diclofop to three hydroxy-diclofop isomers. Hydroxylation was predominant at carbon 4, with migration of chlorine to carbon 5 (67%) and carbon 3 (25%). The 2,4-dichloro-5-hydroxy isomer was identified as a minor reaction product (8%). Substrate-specificity studies showed that the activity was not inhibited or was weakly inhibited by a range of xenobiotic or physiological cytochrome P-450 substrates, with the exception of lauric acid. Wheat microsomes also catalyze the metabolism of the herbicides chlorsulfuron, chlortoluron, and 2,4-dichlorophenoxyacetic acid and of the model substrate ethoxycoumarin, as well as the hydroxylation of the endogenous substrates cinnamic and lauric acids. Treatments of wheat seedlings with phenobarbital or the safener naphthalic acid anhydride enhanced the cytochrome P-450 content of the microsomes and all related activities except that of cinnamic acid 4-hydroxylase, which was reduced. The stimulation patterns of diclofop aryl hydroxylase and lauric acid hydroxylase were similar, in contrast with the other activities tested. Lauric acid inhibited competitively (Ki = 9 μm) the oxidation of diclofop and reciprocally. The similarity of diclofop aryl hydroxylase and lauric acid hydroxylase was further investigated by alternative substrate kinetics, autocatalytic inactivation, and computer-aided molecular modelisation studies, and the results suggest that both reactions are catalyzed by the same cytochrome P-450 isozyme.  相似文献   

8.
The omega-hydroxylation of leukotriene B4 (LTB4) by rat liver microsomes requires NADPH and molecular oxygen, suggesting that the hydroxylation is catalyzed by a cytochrome P-450 (P-450)-linked monooxygenase system. The reaction is inhibited by CO, and the inhibition is reversed by irradiation of light at 450 nm in a light-intensity-dependent manner. The extent of the reversal is strongly dependent on the wavelength of the light used, the 450-nm light is most efficient. The finding provides direct evidence for the identification of the LTB4 omega-hydroxylase as a P-450. The P-450 seems to be also responsible for prostaglandin A1 (PGA1) omega-hydroxylation, but not for lauric acid omega-hydroxylation. The LTB4 omega-hydroxylation is competitively inhibited by PGA1, but not affected by lauric acid. The Ki value for PGA1 of 38 microM agrees with the Km value for PGA1 omega-hydroxylation of 40 microM. LTB4 inhibits the PGA1 omega-hydroxylation by rat liver microsomes in a competitive manner with the Ki of 43 microM, which is consistent with the Km for the LTB4 omega-hydroxylation of 42 microM. An antiserum raised against rabbit pulmonary PG omega-hydroxylase (P-450p-2) inhibits slightly the omega-hydroxylations of LTB4 and PGA1, while it has stronger inhibitory effect on lauric acid omega-hydroxylation. In addition to NADPH-cytochrome P-450 reductase, cytochrome b5 appears to participate in the LTB4 omega-hydroxylating system, since the reaction is inhibited by an antibody raised against the cytochrome b5 as well as one raised against the reductase.  相似文献   

9.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

10.
In this work the microsomal lauric acid omega-hydroxylation, fatty acid peroxisomal beta-oxidation, and the levels of cytochrome P-450 IVA1 were studied in liver tissue from starved rats. Starvation increased the peroxisomal beta-oxidation and the microsomal hydroxylation of fatty acids. The correlation between these activities would support the proposal that both processes are linked, contributing in part to catabolism of fatty acids in liver of starved rats.  相似文献   

11.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

12.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

13.
Terminal acetylenic fatty acid mechanism-based inhibitors (Ortiz de Montellano, P. R., and Reich, N. O. (1984) J. Biol. Chem. 259, 4136-4141) were used as probes in determining the substrate specificity of rabbit lung cytochrome P-450 isozymes of pregnant animals in both microsomes and reconstituted systems. Lung microsomal and reconstituted P-450 form 5-catalyzed lauric acid omega- and (omega-1)-hydroxylase activities were inhibited by a 12-carbon terminal acetylenic fatty acid, 11-dodecynoic acid (11-DDYA), and an 18-carbon terminal acetylenic fatty acid, 17-octadecynoic acid (17-ODYA). Rabbit lung microsomal lauric acid omega-hydroxylase activity was more sensitive to inhibition by 11-DDYA than was (omega-1)-hydroxylase activity. In reconstituted systems containing purified P-450 form 5, both omega- and (omega-1)-hydroxylation of lauric acid were inhibited in parallel when either 11-DDYA or 17-ODYA was used. These data suggest the presence of at least two P-450 isozymes in rabbit lung microsomes capable of lauric acid omega-hydroxylation. This is the first report indicating the multiplicity of lauric acid hydroxylases in lung microsomes. Lung microsomal prostaglandin omega-hydroxylation, mediated by the pregnancy-inducible P-450PG-omega (Williams, D. E., Hale, S. E., Okita, R. T., and Masters, B. S. S. (1984) J. Biol. Chem. 259, 14600-14608) was subject to inhibition by 17-ODYA only, whereas 11-DDYA acid was not an effective inhibitor of this hydroxylase. We have recently developed a new terminal acetylenic fatty acid, 12-hydroxy-16-heptadecynoic acid (12-HHDYA), that contains a hydroxyl group at the omega-6 position. We show that 12-HHDYA possesses a high degree of selectivity for the inactivation of rabbit lung microsomal prostaglandin omega-hydroxylase activity which cannot be obtained with the long chain acetylenic inhibitor, 17-ODYA. In addition, 12-HHDYA has no effect on lauric acid omega- or omega-1-hydroxylation or on benzphetamine N-demethylation. The development of this new terminal acetylenic fatty acid inhibitor provides us with a useful tool with which to study the physiological role of prostaglandin omega-hydroxylation in the rabbit lung during pregnancy.  相似文献   

14.
Candida tropicalis synthesizes a hydroxylase (3 to 5 nmol of product formed per minute per milligram of protein) and a cytochrome P-450 (0.10 to 0.13 nmol per milligram of protein) during growth on n-tetradecane. A three- to four-fold increase in the level of NADPH cytochrome c reductase is also observed in those cells as compared to the level of cells grown on glycerol. The most efficient inducers of the hydroxylase and of cytochrome P-450 are straight-chain alkanes having at least 10 carbon atoms. Alkenes and higher alcohols are also good inducers. There is little or no growth on ramified hydrocarbons such as pristane and on long-chain aldehydes and fatty acids. The partial inhibition of growth on decane is probably due to the denaturation of the microsomal electron carrier systems by the fatty acid formed by hydroxylation of the decane in the yeast.  相似文献   

15.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

16.
Liver microsomal steroid 5-alpha-reduction is catalyzed by a NADPH-dependent enzyme system. The requirement of NADPH-cytochrome P-450 reductase to shuttle reduction equivalents from NADPH to steroid 5-alpha-reductase was investigated using an inhibitory antibody against NADPH-cytochrome P-450 reductase. This antibody preparation inhibited cytochrome c reduction in microsomes from female rat liver with an I50 of 0.75 mg antibody/mg of microsomal protein. Benzphetamine N-demethylation and testosterone 6-beta-hydroxylation, two cytochrome P-450-mediated oxidative reactions, were inhibited by the antibody. On the other hand, testosterone 5-alpha-reductase was not affected by the antibody. These results suggest that NADPH-cytochrome P-450 reductase is not an obligatory component of the liver microsomal steroid 5-alpha-reduction.  相似文献   

17.
Hepatocyte nodules, a characteristic early step in the development of liver cancer in rats, has a distinctive resistance phenotype including a large decrease in total cytochromes P-450 and in two isozymes induced by phenobarbital and two by 3-methylcholanthrene. In this study, it has been observed that the nodules show a large decrease in an additional cytochrome P-450, cytochrome P-452, which is very active in the hydroxylation of lauric acid at C-11 and C-12. The decrease in activity of this microsomal cytochrome P-452 is of the same order of magnitude as the decreases in the other cytochrome P-450 components. These observations are consistent with the hypothesis that there is some more basic alteration in the synthesis or availability of heme and that the changes in the activities of the cytochromes P-450 are secondary.  相似文献   

18.
1. The cytochrome P-450 content (0.75 +/- 0.13 nmol/mg microsomal protein) in musk shrew (suncus, Suncus murinus) liver microsomes was lower than that (1.30 +/- 0.26) in rat liver microsomes, but it is approximately the same level as in the Mongolian gerbil (Meriones unguiculatus, 1.18 +/- 0.14), harvest mouse (Micromys minutus, 1.11 +/- 0.02) and rat. 2. The hydroxylation activity (based on cytochrome P-450) of medium-chain fatty acids (otanoic, decanoic, lauric and tridecanoic acids) is much higher in suncus, Mongolian gerbil and harvest mouse than in rat, with the exception of the activity of decanoic and tridecanoic acids in Mongolian gerbil. 3. This suggests that cytochrome P-450 species catalyzing the hydroxylation of medium-chain fatty acids are present in these laboratory animals in higher concentrations. 4. The aminopyrine N-demethylation activity based on microsomal protein or cytochrome P-450 in suncus is significantly lower than that in rat, but the N-demethylation activity in Mongolian gerbil and harvest mouse is approximately 1.7-2.0-fold greater than that in rat.  相似文献   

19.
We have utilized 11beta-hydroxylase activity and visible absorption spectrophotometry to detect possible complex formation among adrenodoxin reductase, adrenodoxin, and cytochrome P-450(11)beta. At low ionic strength, a 1:1 complex between adrenodoxin reductase and adrenodoxin occurs but does not support maximal rates of 11beta hydroxylation; at least 1 additional molecule of adrenodoxin in excess of the 1:1 complex is required for full hydroxylase activity. Spectrophotometric titration of a mixture of adrenodoxin reductase and cytochrome P-450(11)beta with adrenodoxin indicates sequential formation of 1:1 complexes between adrenodoxin reductase and adrenodoxin and then between a second adrenodoxin and cytochrome P-450(11beta; the adrenodoxin-cytochrome P-450(11)beta complex is only detectable when the concentration of adrenodoxin exceeds that of adrenodoxin reductase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号