首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated previously and a B-CK cDNA probe, the cloning and characterization of which is reported here. The B-CK cDNA hybridizes specifically to a 1.6-kb mRNA found in brain and gizzard but not in adult skeletal muscle tissue. The M-CK cDNA hybridizes to a smaller mRNA 1.4-kb long which is specific to skeletal muscle. In culture, the B-CK mRNA is transiently induced and then declines to a low but detectable level.  相似文献   

2.
The primary structure of chicken ribosomal protein L5.   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA for chicken ribosomal protein L5, which is considered to associate with 5S rRNA, was determined. The cDNA is 975 bp long. The deduced protein has 297 amino acids and has a molecular mass of 34,090 Da. A comparative analysis of the amino acid sequences of chicken L5 and its homologous proteins revealed an extremely conserved region which contains a cluster of basic amino acids.  相似文献   

3.
4.
The primary structure of chicken ribosomal protein L37a.   总被引:3,自引:0,他引:3  
The amino acid sequence of chicken ribosomal protein L37a was deduced from the nucleotide sequence of a recombinant cDNA and its genomic DNA. Chicken ribosomal protein L37a has 92 amino acids and a molecular mass of 10,247 Da including the initiator methionine. The protein contains a typical Cys2Cys2 zinc finger motif, which may be involved in protein-RNA interaction.  相似文献   

5.
6.
M-Protein (165 kDa) is a structural constituent of myofibrillar M-band in striated muscle. We generated a monoclonal antibody which recognized a 165-kDa protein from chicken pectoralis muscle in immunoblot analysis and stained the M-band under immunofluorescence microscopy. By screening a lambda gt11 cDNA library from chicken embryonic pectoralis muscle with this antibody, we isolated a cDNA clone encoding the M-protein. Northern blot analysis showed that M-protein mRNA is expressed in pectoralis and cardiac muscle but not in gizzard smooth muscle or non-muscle tissues. Moreover, the anterior latissimus dorsi muscle, which consists almost exclusively of slow fiber types, contains no detectable levels of the mRNA. The full-length cDNA sequence predicted a 1,450-amino acid polypeptide with a calculated molecular weight of 163 x 10(3). The encoded protein contains several copies of two different repetitive motifs: five copies of fibronectin type III repeats are in the middle part of the predicted molecule, and two and four copies of the immunoglobulin C2-type repeats are located toward the NH2-terminal and COOH-terminal regions, respectively. This indicates that M-protein, along with other thick filament-associated proteins such as C-protein, twichin, and titin, belongs to the superfamily of cytoskeletal proteins with immunoglobulin/fibronectin repeats.  相似文献   

7.
8.
9.
The amino acid sequence of chicken muscle acylphosphatase isozyme Ch1 was determined. The protein consists of 102 amino acid residues, does not contain histidine, and the NH2-terminus is acetylated: Ac-Ser-Ala-Leu-Thr-Lys-Ala-Ser-Gly-Ser- Leu-Lys-Ser-Val-Asp-Tyr-Glu-Val-Phe-Gly-Arg-Val-Gln-Gly-Val-Cys-Phe-Arg- Met- Tyr-Thr-Glu-Glu-Glu-Ala-Arg-Lys-Leu-Gly-Val-Val-Gly-Trp-Val-Lys-Asn- Thr- Ser-Gln-Gly-Thr-Val-Thr-Gly-Gln-Val-Gln-Gly-Pro-Glu-Asp-Lys-Val-Asn-Ala- Met- Lys-Ser-Trp-Leu-Ser-Lys-Val-Gly-Ser-Pro-Ser-Ser-Arg-Ile-Asp-Arg-Thr-Lys- Phe-Ser- Asn-Glu-Lys-Glu-Ile-Ser-Lys-Leu-Asp-Phe-Ser-Gly-Phe-Ser-Thr-Arg-Tyr-OH. This sequence differs in 44% of the total positions from the other isozyme (Ch2) of chicken muscle acylphosphatase (Ohba et al., the accompanying paper). The sequence of Ch1 has three substitutions from that of turkey muscle acylphosphatase; these are Ser from Ala at position 9, Ser from Arg at 47, and Lys from Asn at 83. The sequence has about 80% homology with those mammalian muscle acylphosphatases.  相似文献   

10.
The primary structure of chicken muscle acylphosphatase isozyme Ch2   总被引:1,自引:0,他引:1  
The amino acid sequence of one, Ch2, of the two isozymes of chicken muscle acylphosphatase was determined. It consists of 98 amino acid residues with N-acetylalanine at the amino(N)-terminus and contains no cysteine: Ac-Ala-Gly-Ser-Glu- Gly-Leu-Met-Ser-Val-Asp-Tyr-Glu-Val-Ser-Gly-Arg-Val-Gln-Gly-Val-Phe-Phe- Arg- Lys-Tyr-Thr-Gln-Ser-Glu-Ala-Lys-Arg-Leu-Gly-Leu-Val-Gly-Trp-Val-Arg-Asn- Thr- Ser-His-Gly-Thr-Val-Gln-Gly-Gln-Ala-Gln-Gly-Pro-Ala-Ala-Arg-Val-Arg-Glu- Leu- Gln-Glu-Trp-Leu-Arg-Lys-Ile-Gly-Ser-Pro-Gln-Ser-Arg-Ile-Ser-Arg-Ala-Glu- Phe- Thr-Asn-Glu-Lys-Glu-Ile-Ala-Ala-Leu-Glu-His-Thr-Asp-Phe-Gln-Ile-Arg-Lys- COOH. The sequence differs in 44% of the total positions from the other isozyme, Ch1. Comparison of the sequence and the predicted conformational profile of Ch2 with those of Ch1 suggests that they share a common evolutionary origin and appear to have retained similar conformations throughout their evolutionary development.  相似文献   

11.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.  相似文献   

12.
13.
14.
1. Adult chicken hemoglobins Hb A and Hb D interact with glutathione disulfide, GSSG. The major hemoglobin, Hb A, forms at least two new components, termed GHb AI and GHb AII, and Hb D forms at least one, GHb DI. 2. At pH 8.0 and 5 degrees C, glutathione disulfide (GSSG) in a molar excess of 50 x took 6 days to complete the reaction, although at pH 8.6 and 41 degrees C only 1 hr was needed, where the hemoglobins Hb A and Hb D were converted to their most mobile forms GHb AII and GHb DI. 3. Slight molar excess (2.7 GSSG/Hb, pH 7.4, 41 degrees C), reacting for 1 hr, showed extensive formation of GHb AI and some GHb AII. 4. Electrophoretic patterns, from the reaction products of 54 GSSG/Hb excess at different times, showed a marked pH dependence. 5. Titration with pCMB (p-chloromercuribezoic acid) of DTE (dithioerythrytol)-reduced samples showed 8.0 +/- 0.4 (N = 5) -SH (sulfhydryl) per tetramer. In hemolysates not reacted with DTE, 6.0 +/- 0.4 (N = 3) -SH were detected. 6. DTE-reduced and GSSG-reacted hemoglobins showed 4.6 +/- 0.5 (N = 7) -SH and 1.5 +/- 0.4 (N = 6) -SH, respectively, as titrated by DTNB, pH 8.0. DTE-reduced hemoglobins showed four fast-reacting -SH groups, no longer present in GSSG-reacted hemoglobins. 7. Our data indicate that chicken GHb AI and GHb DI probably have two glutathionyl residues per tetramer whereas GHb AII has four.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
On ferritin heterogeneity. Further evidence for heteropolymers   总被引:25,自引:0,他引:25  
Tissue ferritins from the horse, rat, and human consist of multiple isoferritins some of which are common to more than one tissue in the same individual. Subunit analyses indicate that the ferritins from all three species are similarly composed of only two types of subunit with an approximate Mr of 21,000 and 19,000, designated H and L. The relative amounts of these subunits vary progressively throughout the isoferritin spectrum. Amino acid analyses and tryptic peptide maps indicate that the H and L subunits have extensive sequence homologies and that both are species-specific. Both subunits have been identified as the primary products of apoferritin synthesis in a wheat germ lysate programmed by rat liver mRNA. These results substantiate our proposal (Adelman, T. G., Arosio, P., and Drysdale, J. W. (1975) Biochem. Biophys. Res. Commun. 63, 1056-1062) that tissue ferritins are not unique homopolymers but families of hybrid molecules consisting of different proportions of two subunit types.  相似文献   

17.
18.
Mitochondrial adenylate kinase has been purified 5400-fold from chicken liver extract in an overall yield of 36%. The purified enzyme has a specific activity of 810 U/mg, a molecular weight of 28 000, and the following amino acid composition: 21 aspartic acid or asparagine, 14 threonine, 17 serine, 27 glutamic acid or glutamine, 16 proline, 22 glycine, 22 alanine, 15 valine, 6 methionine, 11 isoleucine, 29 leucine, 5 tyrosine, 7 phenylalanine, 16 lysine, 7 histidine, 19 arginine, 3 half-cystine, and no tryptophan, totalling 257 residues. The purified enzyme has one disulfide bond and one sulfhydryl group. The disulfide bond is related to the active conformation of the enzyme, whereas the sulfhydryl group does not contribute to the enzyme activity. The sulfhydryl group is easily oxidized in the presence of Cu2+ resulting in the formation of dimer with about one half of the specific activity of the monomer. The enzyme is similar to porcine heart mitochondrial adenylate kinase in antigenicity but different from chicken cytosolic adenylate kinase. Mitochondrial adenylate kinase was synthesized in the mRNA-dependent rabbit reticulocyte lysate system programmed with total chicken liver RNA. The mobility in sodium dodecylsulfate gel electrophoresis of the product obtained in vitro was the same as that of the purified mitochondrial adenylate kinase. This evidence indicates that the mitochondrial adenylate kinase is synthesized as a polypeptide with a molecular weight indistinguishable from that of the mature protein.  相似文献   

19.
20.
Parameters influencing the efficiency of expression of the human immune interferon (IFN-gamma) gene in E. coli were studied by comparing a series of eight in vitro-derived gene variants. These contained all possible combinations of silent mutations in the first three codons of the mature IFN-gamma polypeptide coding sequence. Expression levels varied up to 50-fold among the different constructions. Comparison of messenger RNA secondary structure models for each variant suggested that the presence of stem-loop structures blocking the translation initiation signals could drastically decrease the efficiency of IFN-gamma synthesis. With variants displaying no stable mRNA secondary structure in the region, a C----U transition at position +11 after the AUG resulted in a 5-fold increase in expression indicating that RNA primary structure also plays an important role in expression. In addition we demonstrate that, in this system, a spacing of 8 nucleotides between the Shine-Dalgarno region and AUG was optimal for gene expression and that the steady-state production level of IFN-gamma rose exponentially with increasing rate of synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号