首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated atmospheric carbon dioxide (CO2) has the potential to alter soil carbon (C) and nitrogen (N) cycling in arid ecosystems through changes in net primary productivity. However, an associated feedback exists because any sustained increases in plant productivity will depend upon the continued availability of soil N. We took soils from under the canopies of major shrubs, grasses, and plant interspaces in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 and incubated them in the laboratory with amendments of labile C and N to determine if elevated CO2 altered the mechanistic controls of soil C and N on microbial N cycling. Net ammonification increased under shrubs exposed to elevated CO2, while net nitrification decreased. Elevated CO2 treatments exhibited greater fluxes of N2O–N under Lycium spp., but not other microsites. The proportion of microbial/extractable organic N increased under shrubs exposed to elevated CO2. Heterotrophic N2‐fixation and C mineralization increased with C addition, while denitrification enzyme activity and N2O–N fluxes increased when C and N were added in combination. Laboratory results demonstrated the potential for elevated CO2 to affect soil N cycling under shrubs and supports the hypothesis that energy limited microbes may increase net inorganic N cycling rates as the amount of soil‐available C increases under elevated CO2. The effect of CO2 enrichment on N‐cycling processes is mediated by its effect on the plants, particularly shrubs. The potential for elevated atmospheric CO2 to lead to accumulation of NH4+ under shrubs and the subsequent volatilization of NH3 may result in greater losses of N from this system, leading to changes in the form and amount of plant‐available inorganic N. This introduces the potential for a negative feedback mechanism that could act to constrain the degree to which plants can increase productivity in the face of elevated atmospheric CO2.  相似文献   

2.
We investigated the individual and interactive effects of moderately elevated CO2 (ambient air + 100 ppm) and/or O3 (40–50 ppb) on soil N cycling and microbial biomass N in a 3-year open-top chamber experiment conducted in meadow mesocosms. The results show that elevated O3 decreased the concentrations of mineral N and NH4+-N in the mesocosm soil in the last growing season (2004). Total N, NO3-N, microbial biomass N, decomposition rate, potential nitrification and denitrification were not affected by elevated O3 and/or CO2. It is thus concluded that the proposed future ambient O3 and CO2 levels, such as used in this experiment, may not induce major changes in the below-ground N processes in N-poor northern European hay meadow ecosystems.  相似文献   

3.
Increasing atmospheric CO2 concentration can influence the growth and chemical composition of many plant species, and thereby affect soil organic matter pools and nutrient fluxes. Here, we examine the effects of ambient (initially 362 μL L?1) and elevated (654 μL L?1) CO2 in open‐top chambers on the growth after 6 years of two temperate evergreen forest species: an exotic, Pinus radiata D. Don, and a native, Nothofagus fusca (Hook. F.) Oerst. (red beech). We also examine associated effects on selected carbon (C) and nitrogen (N) properties in litter and mineral soil, and on microbial properties in rhizosphere and hyphosphere soil. The soil was a weakly developed sand that had a low initial C concentration of about 1.0 g kg?1 at both 0–100 and 100–300 mm depths; in the N. fusca system, it was initially overlaid with about 50 mm of forest floor litter (predominantly FH material) taken from a Nothofagus forest. A slow‐release fertilizer was added during the early stages of plant growth; subsequent foliage analyses indicated that N was not limiting. After 6 years, stem diameters, foliage N concentrations and C/N ratios of both species were indistinguishable (P>0.10) in the two CO2 treatments. Although total C contents in mineral soil at 0–100 mm depth had increased significantly (P<0.001) after 6 years growth of P. radiata, averaging 80±0.20 g m?2 yr?1, they were not significantly influenced by elevated CO2. However, CO2‐C production in litter, and CO2‐C production, microbial C, and microbial C/N ratios in mineral soil (0–100 mm depth) under P. radiata were significantly higher under elevated than ambient CO2. CO2‐C production, microbial C, and numbers of bacteria (but not fungi) were also significantly higher under elevated CO2 in hyphosphere soil, but not in rhizosphere soil. Under N. fusca, some incorporation of the overlaid litter into the mineral soil had probably occurred; except for CO2‐C production and microbial C in hyphosphere soil, none of the biochemical properties or microbial counts increased significantly under elevated CO2. Net mineral‐N production, and generally the potential utilization of different substrates by microbial communities, were not significantly influenced by elevated CO2 under either tree species. Physiological profiles of the microbial communities did, however, differ significantly between rhizosphere and hyphosphere samples and between samples under P. radiata and N. fusca. Overall, results support the concept that a major effect on soil properties after prolonged exposure of trees to elevated CO2 is an increase in the amounts, and mineralization rate, of labile organic components.  相似文献   

4.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

5.
The impact of elevated atmospheric CO2 concentrations on the nitrogen cycle was evaluated in a 2-month experiment in monospecific grassland microcosms (Holcus lanatus L.) grown on reconstituted grassland soil. The responses of the N pools in the plants, soil, and soil microbes were studied. The impact of high CO2 on key stages of the N cycle, especially nitrification and denitrification processes, were also measured. Our study showed a strong plant response to high CO2: total biomass increased by 76% (P < 0.001) and root length density increased by 77% (P = 0.010). However, total plant N was not significantly modified by high CO2, because the percent N in the plant decreased by 40% (P < 0.001). We observed a large decrease in soil NO3 concentration under elevated CO2 (–50%; P = 0.002). Soil ammonium concentrations were much less affected by CO2 enrichment, and only in resin bags (–8%, P = 0.019). Soil nitrifying enzyme activity (NEA) had a tendency to increase (+17%; P = 0.061) and denitrifying enzyme activity (DEA) decreased (-12%; P = 0.013). We found evidence of increased microbial N sink (microbial N increased by 17%, P = 0.004). This and other studies suggest that rising CO2 often reduces soil nitrate concentrations, which may lead to decreased nitrate leaching. Elevated CO2 led to environmental conditions that were less favourable for denitrification in our study.  相似文献   

6.
Despite increasing interest in the effects of climate change on soil processes, the response of nitrification to elevated CO2 remains unclear. Responses may depend on soil nitrogen (N) status, and inferences may vary depending on the methodological approach used. We investigated the interactive effects of elevated CO2 and inorganic N supply on gross nitrification (using 15N pool dilution) and potential nitrification (using nitrifying enzyme activity assays) in Dactylis glomerata mesocosms. We measured the responses of putative drivers of nitrification (NH 4 + production, NH 4 + consumption, and soil environmental conditions) and of potential denitrification, a process functionally linked to nitrification. Gross nitrification was insensitive to all treatments, whereas potential nitrification was higher in the high N treatment and was further stimulated by elevated CO2 in the high N treatment. Gross mineralization and NH 4 + consumption rates were also significantly increased in response to elevated CO2 in the high N treatment, while potential denitrification showed a significant increase in response to N addition. The discrepancy between the responses of gross and potential nitrification to elevated CO2 and inorganic N supply suggest that these measurements provide different information, and should be used as complementary approaches to understand nitrification response to global change.  相似文献   

7.
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38 mg g?1 litter as respired CO2 and 138 mg g?1 litter as DOC, suggesting short‐term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO2.  相似文献   

8.
Although soil organisms play an essential role in the cycling of elements in terrestrial ecosystems, little is known of the impact of increasing atmospheric CO2 concentrations on soil microbial processes. We determined microbial biomass and activity in the soil of multitrophic model ecosystems housed in the Ecotron (NERC Centre for Population Biology, Ascot, UK) under two atmospheric CO2 concentrations (ambient vs. ambient + 200 ppm). The model communities consist of four annual plant species which naturally co-occur in weedy fields and disturbed ground throughout southern England, together with their herbivores, parasitoids and soil biota. At the end of two experimental runs lasting 9 and 4.5 months, respectively, root dry weight and quality showed contradictory responses to elevated CO2 concentrations, probably as a consequence of the different time-periods (and hence number of plant generations) in the two experiments. Despite significant root responses no differences in microbial biomass could be detected. Effects of CO2 concentration on microbial activity were also negligible. Specific enzymes (protease and xylanase) showed a significant decrease in activity in one of the experimental runs. This could be related to the higher C:N ratio of root tissue. We compare the results with data from the literature and conclude that the response of complex communities cannot be predicted on the basis of oversimplified experimental set-ups.  相似文献   

9.
We investigated the effects of spring barley growth on nitrogen (N) transformations and rhizosphere microbial processes in a controlled system under elevated carbon dioxide (CO2) at two levels of N fertilization (applied with 15N labelling). After 25 d, elevated CO2 (twice ambient) increased plant growth (dry weight, DW) by 141% at low‐N fertilization and by 60% at high‐N fertilization, but its positive effect on the root‐to‐shoot ratio was only significant at low‐N input. As a result of this plant response, elevated CO2 caused a greater soil CO2 efflux, rhizosphere soil DW, and soil microbial biomass under N‐limiting conditions than under high N availability. Elevated CO2 also caused a significant (P < 0.001) increase in the N recovered by the plant from both the labelled (Nf) and unlabelled (Ns + Nuf) N pools. The dynamics of N in the system as affected by elevated CO2 were driven principally by mineralization–immobilization turnover, with little loss by denitrification. Under N‐limiting conditions, there is evidence to suggest enhanced nutrient release from soil organic matter (SOM) pools—a process which could be defined as priming. The results of our experiment did not indicate a direct plant‐mediated effect of elevated CO2 on nitrous oxide (N2O) fluxes or denitrification activity.  相似文献   

10.
An increase in concentration of atmospheric CO2 is one major factor influencing global climate change. Among the consequences of such an increase is the stimulation of plant growth and productivity. Below‐ground microbial processes are also likely to be affected indirectly by rising atmospheric CO2 levels, through increased root growth and rhizodeposition rates. Because changes in microbial community composition might have an impact on symbiotic interactions with plants, the response of root nodule symbionts to elevated atmospheric CO2 was investigated. In this study we determined the genetic structure of 120 Rhizobium leguminosarum bv. trifolii isolates from white clover plants exposed to ambient (350 μmol mol?1) or elevated (600 μmol mol?1) atmospheric CO2 concentrations in the Swiss FACE (Free‐Air‐Carbon‐Dioxide‐Enrichment) facility. Polymerase Chain Reaction (PCR) fingerprinting of genomic DNA showed that the isolates from plants grown under elevated CO2 were genetically different from those isolates obtained from plants grown under ambient conditions. Moreover, there was a 17% increase in nodule occupancy under conditions of elevated atmospheric CO2 when strains of R. leguminosarum bv. trifolii isolated from plots exposed to CO2 enrichment were evaluated for their ability to compete for nodulation with those strains isolated from ambient conditions. These results indicate that a shift in the community composition of R. leguminosarum bv. trifolii occurred as a result of an increased atmospheric CO2 concentration, and that elevated atmospheric CO2 affects the competitive ability of root nodule symbionts, most likely leading to a selection of these particular strains to nodulate white clover.  相似文献   

11.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

12.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   

13.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

14.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

15.
The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.  相似文献   

16.
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely distributed northern hardwood species at sites of low and high soil nitrogen availability. In addition, we assessed whether the carbon–nutrient balance (CNB) and growth differentiation balance (GDB) hypotheses could be extended to predict changes in litter quality in response to resource availability. Sugar maple (Acer saccharum) was grown in the field in open‐top chambers at 36 and 55 Pa partial pressure CO2, and initial soil mineralization rates of 45 and 348 μg N g?1 d?1. Naturally senesced leaf litter was assessed for chemical composition and incubated in the laboratory for 111 d. Microbial respiration and the production of dissolved organic carbon (DOC) were quantified as estimates of decomposition. Elevated CO2 and low soil nitrogen resulted in higher litter concentrations of nonstructural carbohydrates and condensed tannins, higher C/N ratios and lower N concentrations. Soil N availability appears to have had a greater effect on litter quality than did atmospheric CO2, although the treatments were additive, with highest concentrations of nonstructural carbohydrates and condensed tannins occurring under elevated CO2–low soil N. Rates of microbial respiration and the production of DOC were insensitive to differences in litter quality. In general, concentrations of litter constituents, except for starch, were highly correlated to those in live foliage, and the CNB/GDB hypotheses proved useful in predicting changes in litter quality. We conclude the chemical composition of sugar maple litter will change in the future in response to rising atmospheric CO2, and that soil N availability will exert a major control. It appears that microbial metabolism will not be directly affected by changes in litter quality, although conclusions regarding decomposition as a whole must consider the entire soil food web.  相似文献   

17.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

18.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

19.
Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long‐term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230‐day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m−2 yr−1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF.  相似文献   

20.
We report changes in nitrogen cycling in Florida scrub oak in response to elevated atmospheric CO2 during the first 14 months of experimental treatment. Elevated CO2 stimulated above-ground growth, nitrogen mass, and root nodule production of the nitrogen-fixing vine, Galactia elliottii Nuttall. During this period, elevated CO2 reduced rates of gross nitrogen mineralization in soil, and resulted in lower recovery of nitrate on resin lysimeters. Elevated CO2 did not alter nitrogen in the soil microbial biomass, but increased the specific rate of ammonium immobilization (NH4+ immobilized per unit microbial N) measured over a 24-h period. Increased carbon input to soil through greater root growth combined with a decrease in the quality of that carbon in elevated CO2 best explains these changes. These results demonstrate that atmospheric CO2 concentration influences both the internal cycling of nitrogen (mineralization, immobilization, and nitrification) as well as the processes that regulate total ecosystem nitrogen mass (nitrogen fixation and nitrate leaching) in Florida coastal scrub oak. If these changes in nitrogen cycling are sustained, they could cause long-term feedbacks to the growth responses of plants to elevated CO2. Greater nitrogen fixation and reduced leaching could stimulate nitrogen-limited plant growth by increasing the mass of labile nitrogen in the ecosystem. By contrast, reduced nitrogen mineralization and increased immobilization will restrict the supply rate of plant-available nitrogen, potentially reducing plant growth. Thus, the net feedback to plant growth will depend on the balance of these effects through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号