首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
树木细根生产与周转研究方法评述   总被引:68,自引:11,他引:68  
树木细根在森林生态系统能量流动和物质循环中起重要的作用。树木细根研究及方法探讨也成为当今森林生态学的研究热点。在中国,对树木细根生产和周转的研究尚未引起充分重视。在此介绍了目前国外普遍采用的树木细根研究方法及其优缺点、适用性以及不同方法的研究比较,以期对我国开展树木细根方面的研究有所裨益。  相似文献   

2.
树木细根养分内循环   总被引:4,自引:1,他引:4  
黄石竹  张彦东  王政权 《生态学杂志》2006,25(11):1395-1399
养分内循环是树木减少养分损失,提高养分利用效率的重要途径。树木细根寿命短、周转快.每年大量凋落死亡,因此,近20多年来树木细根养分内循环的研究逐渐受到人们的重视。关于树木细根养分内循环目前的研究结论比较复杂。本文从细根在树木地下部分养分内循环中的重要地位、细根养分内循环对树木减少养分损失的重要性、细根中各养分元素内循环的研究现状以及细根养分内循环研究方法存在的问题等方面综合论述了国内外的进展情况,并对今后的研究趋势进行了展望。  相似文献   

3.
鼎湖山南亚热带森林细根分解干物质损失和元素动态   总被引:30,自引:3,他引:30  
鼎湖山南亚热带森林细根分解干物质损失和元素动态温达志(中国科学院华南植物研究所,广州510650)魏平张佑昌(中国科学院华南植物研究所鼎湖山树木园,肇庆526070)孔国辉(中国科学院华南植物研究所,广州510650)DryMasLosandChem...  相似文献   

4.
长白山阔叶红松林细根周转的研究   总被引:46,自引:2,他引:46  
系统研究了长白山阔叶红松林细根生物量、生产力、年周转率及其在净生产力分配中的作用,生物量调查结果表明,阔叶红松林活细根的生物量为5049kg.ha~(-1),死细根生物量的平均值为1883kg.ha~(-1),细根的年周转率为0.96,年生产量为4860kg.ha~(-1),约占总净初级生产力的19.40%,年死亡量为2343kg.ha~(-1),相当于阔叶红松林枯枝落叶年凋落量的60%,由此提出了森林凋落物应包括枯枝落叶和根系凋落物的论点。  相似文献   

5.
树木位置和胸径对人工林细根水平分布的影响   总被引:5,自引:2,他引:3  
通过研究福建三明莘口林场33年生格氏栲和杉木人工林细根生物量与树木位置和胸径大小的关系,探讨人工林细根水平分布特点。用土芯法(土钻内径6 .8cm,深10 0 cm)测定细根生物量,格氏栲和杉木人工林分别随机取土芯4 1个和4 0个,同时记录离取样点最近的第1棵、第2棵和第3棵树的距离和胸径。格氏栲和杉木人工林细根生物量平均值分别为3.2 6 6 t/ hm2和2 .0 4 8t/ hm2 ,变异系数分别达37.3%和4 2 .8% ,细根生物量均遵从正态分布(p<0 .0 5 )。格氏栲和杉木人工林细根生物量均与离取样点最近第1棵、第2棵树的距离有显著的负相关,且以与最近第1棵树距离的相关系数最大。格氏栲人工林细根生物量与最近第1棵树的胸径呈显著的正相关(p<0 .0 1) ,而与最近第2、第3棵树的胸径无关(p>0 .0 5 ) ;而杉木人工林细根生物量则与最近第1、第2和第3棵树的胸径均无显著相关(p>0 .0 5 )。逐步多元线性回归分析表明,离取样点最近第1棵树距离和胸径可解释格氏栲人工林细根生物量水平变异的4 1.0 % ,而离取样点最近第1、2棵树距离则可解释杉木人工林细根生物量水平变异的4 0 .6 %。由于人工林细根水平分布呈现特定模式,规则取样估计细根生物量将产生系统误差。  相似文献   

6.
为了解川西高山森林凋落物分解过程的微生物生物量特征,采用凋落物分解袋法,测定了粗枝云杉(Picea asperata)、岷江冷杉(Abies faxoniana)和红桦(Betula albosinensi)细根分解几个关键时期微生物生物量碳(MBC)、氮(MBN)和磷(MBP)的动态特征。3个树种细根分解过程中的MBC均表现为在土壤深冻期下降至全年最低点后缓慢上升,至土壤融冻中期再次下降,到生长季节增长的趋势。然而,粗枝云杉与岷江冷杉细根分解过程中的MBC最大值出现在生长季节末期,红桦细根分解过程中的MBC最大值出现在土壤冻结初期。3个树种细根分解过程中的MBN表现出相似的动态规律:土壤深冻期急剧下降至全年最低,随后在冻融季节无显著变化,生长季节明显增加,到生长季节末期达到全年最大值。另外,粗枝云杉和岷江冷杉细根分解过程中MBP均随着分解的进行呈现增加趋势,而红桦细根分解过程中的MBP在土壤融冻末期出现最大值,在生长季节中期出现另一峰值,生长季节末期明显下降。这些结果表明冬季细根分解过程中仍存在一定的土壤微生物,但受到细根质量、温度及其驱动的环境因子的深刻影响。  相似文献   

7.
为了解桢楠(Phoebe zhennan)不同种源细根形态和生物量分配的差异,采用全根调查的方法,对桢楠自然分布区13个种源2.5年生幼苗的细根形态和生物量进行了研究。结果表明,桢楠种源间各级细根的平均直径、总根长和表面积差异显著,在种源内细根的平均直径随根序的增加而增加,但根序间总根长和表面积差异规律不明显。根序生物量分配随根序增加而增加,1~4级根生物量分配分别为6.33%、14.47%、25.03%和54.17%。通过综合评价,以HT、LF、ES和WC种源的根系最优,具有较高的生长潜力。  相似文献   

8.
西双版纳不同热带森林群落土壤表层的细根年动态   总被引:5,自引:0,他引:5  
施济普  唐建维 《广西植物》2002,22(6):509-512+502-512,502
用钻土蕊法和内生长土蕊法研究了西双版纳 4个不同的热带森林群落一年内细根现存量和两个群落长入细根量的动态变化 ,结果表明 :在原始群落中活细根现存量 6~ 1 2月间相对较大 ,峰值为 1 0月份 ,在 2~ 6月间相对较少 ,死细根现存量高值出现于 4月中后期 ,最小值出现于 8月。人为干扰较大的 1 5年生群落和人工群落活细根现存量在各个月份出现不规律的变化 ,死细根现存量与原始林有类似的变化规律。 3 0年生群落活细根现存量在 6~ 1 0月份相对较大 ,低值出现于 2月 ,死细根现存量高峰值则出现于 6月 ,低峰值出现在 8月。细根长入量在原始群落和人工群落 4~ 6月期间量最大 ,人工群落于上年 1 2~ 2月份出现最低值。  相似文献   

9.
王微  伍小刚  胡凯  陶建平 《生态学报》2016,36(11):3391-3401
在全球变化背景下,植物凋落物输入的改变对森林生态系统地下生态过程具有重要的影响。中亚热带森林中,细根进入凋落物层生长是一种常见现象,然而凋落物量的改变对细根生长影响的研究较少。通过对中国中亚热带针叶林、针阔混交林及常绿阔叶林这3种典型森林进行地上凋落物添加和去除实验,研究不同凋落物处理水平下细根生物量、垂直分布及形态特征的变化。结果表明:与对照(CK)相比,地上凋落物去除(LR)分别导致针叶林和针阔混交林细根总生物量显著降低40.3%和37.5%,而凋落物添加(LA)使常绿阔叶林中的细根总生物量明显提高了19.4%。不同层次的细根生物量对凋落物处理的响应不同,从针叶林到常绿阔叶林,凋落物量的改变对细根的垂直分布的影响加剧。LA处理明显提高常绿阔叶林凋落物层的细根生物量百分比(相比对照提高了10.6%)以及降低7.5—15 cm土层的细根生物量百分比(相比对照降低了10.4%)。凋落物层中生长的细根生物量和凋落物层厚度呈高度线性相关(R~2=0.742,P0.01),并且和凋落物层生物量也呈显著线性相关(R~2=0.521,P0.01)。3种森林类型细根的根长密度(RLD)和比根长(SRL)变化趋势与细根所处的层次紧密相关,而不同凋落物处理对它们的影响均不明显,说明细根对养分的获取策略表现为在养分丰富的凋落物层和表土层投资更多的生物量和更活跃的代谢,而不是改变细根形态的表型可塑性。  相似文献   

10.
李媛媛  王正文  孙涛 《植物研究》2017,37(6):848-854
细根分解是森林生态系统碳循环的重要过程之一,其分解速率受到大气氮沉降增加的潜在影响。利用长期模拟氮沉降样地(2009年至今),采用凋落物分解袋方法,研究了氮添加对温带常见的5个森林树种长期细根分解的影响。结果表明:细根分解呈现先快后慢的趋势,在分解第516天质量损失达30%~50%,之后质量残留率变化较为平缓。总体上,渐近线分解模型可以更准确的反应各处理细根分解速率。氮添加对细根分解具有阶段性影响,分解前期促进细根分解,分解后期抑制分解。在细根分解后期氮添加减缓分解速率,一方面是因为木质素等较难分解的物质所占比例升高所带来的直接影响,另一方面,是因为氮添加改变了微生物活动所带来的间接影响。  相似文献   

11.
The rapid turnover of the fine root system is a major pathway of carbon and nutrient flow from plant to soil in forest ecosystems. In order to quantify these fluxes there is a need to understand how fine root demography is influenced by edaphic, environmental and plant ontogenetic factors. We studied the influence of four major factors (season, depth, root diameter and tree age) on the survivorship and longevity of fine roots of Prunus avium L. (wild cherry) over two years in North East Scotland. Survival analysis of data derived from minirhizotron observations showed that, for the range of root diameters studied, an increase in root diameter of 0.1 mm was associated with a 16% decrease in the risk of death. Depth was also an important factor; roots present at a depth of 10 cm had significantly lower survivorship than did roots at all lower depths studied. The effects of tree age and season on root production were more complex. Roots of old trees were more likely to die in the spring and roots of young trees were more likely to die in the autumn. Our data illustrate the complex factors that must be taken into account when scaling up information from individual observations of root longevity to model the contribution of fine roots to C and nutrient fluxes in forest ecosystems.  相似文献   

12.
根系周转是陆地生态系统碳循环的关键过程, 对研究土壤碳库变化及全球气候变化均具有重要意义。然而由于根系周转率的测量计算方法较多, 不同方法得出的结果差异较大, 且目前对全球区域尺度上森林生态系统根系周转的研究还不够充分, 使得全球森林生态系统根系周转变化规律仍不清楚。该研究通过收集文献数据并统一周转率计算方法, 对全球5种森林类型的细根周转空间格局进行整合, 同时结合土壤理化性质和气候数据, 得出影响森林生态系统细根周转的因子。结果表明, 不同森林类型细根周转率存在显著差异, 且随着纬度的升高逐渐降低; 森林生态系统细根周转率与年平均温度和年平均降水量呈正相关; 森林生态系统细根周转率与土壤有机碳含量呈正相关但与土壤pH值呈负相关。该研究为揭示森林生态系统细根周转规律及机制提供了科学依据。  相似文献   

13.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

14.
细根对植物功能的发挥和土壤碳库及全球碳循环具有重要意义。采用容器法和微根管法于2013年6~10月整个生长季内对紫花苜蓿的细根生物量、生产以及周转规律进行研究。结果表明:(1)紫花苜蓿活细根现存生物量平均值以接种摩西球囊霉(Gm)处理最高(12.46g·m-2),未接种对照最低(7.31g·m-2),并且活细根现存量在9月中旬达到峰值;死细根现存生物量呈先增加后降低再增加的变化趋势,在整个生长过程中未接种处理高于接种处理,接种根内球囊霉(Gi)处理死细根现存平均生物量(3.11g·m-2)又较接种组其他处理低。(2)苜蓿植株细根生长量以接种幼套球囊霉(Ge)处理最大(0.045 mm·cm-2·d-1),接种Gm处理和未接种对照最低(均为0.027mm·cm-2·d-1);而未接菌植株细根死亡量(0.044mm·cm-2·d-1)显著高于接种植株,接种组又以Gi处理最低(0.021mm·cm-2·d-1)。(3)紫花苜蓿在生长季节内细根生产和死亡的高峰分别出现在8月底和10月份,低谷出现在9月底到10月中旬和6月底到8月;接种地表球囊霉(Gv)后细根现存量和年生长量显著高于对照和接种其他菌种处理,细根的周转以对照组最大,而接种Gv和Gm处理较低。研究发现,通过接种丛植菌根真菌可以提高苜蓿细根生物量,降低细根的死亡,增加细根寿命。  相似文献   

15.
用土钻法研究了杉木(Cunninghamialanceolata)、火力楠(Micheliamaclurei)纯林和混交林的细根分布,用分解袋法研究了杉木和火力楠细根的分解,计算了3个林分中细根分解的N,P,K,Ca,Mg的归还量。活细根的垂直分布以火力楠纯林层次性最强,混交林次之,杉木纯林最差。火力楠细根的养分含量比杉木细根高,而C/N比低。火力楠细根年分解率比杉木快,火力楠为57.7%,而杉木为32.78%。细根分解的养分归还量多少顺序依次为:火力楠纯林、杉木火力楠混交林和杉木纯林。混交林中,细根分解的N,P,K,Ca和Mg归还量分别为枯枝落叶的33.38%,5.82%,269.33%,34.12%和376.08%。细根在3个林分的物质循环和周转中起着不可忽视的作用。  相似文献   

16.
17.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

18.
Measuring Fine Root Turnover in Forest Ecosystems   总被引:13,自引:1,他引:12  
Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.  相似文献   

19.
Growth and death of fine roots represent an important carbon sink in forests. Our understanding of the patterns of fine root turnover is limited, in particular in tropical forests, despite its acknowledged importance in the global carbon cycle. We used the minirhizotron technique for studying the changes in fine root longevity and turnover along a 2000-m-elevational transect in the tropical mountain forests of South Ecuador. Fine root growth and loss rates were monitored during a 5-mo period at intervals of four weeks with each 10 minirhizotron tubes in three stands at 1050, 1890, and 3060 m asl. Average root loss rate decreased from 1.07 to 0.72 g/g/yr from 1050 to 1890 m, indicating an increase in mean root longevity with increasing elevation. However average root loss rate increased again toward the uppermost stand at 3060 m (1.30 g/g/yr). Thus, root longevity increased from lower montane to mid-montane elevation as would be expected from an effect of low temperature on root turnover, but it decreased further upslope despite colder temperatures. We suggest that adverse soil conditions may reduce root longevity at high elevations in South Ecuador, and are thus additional factors besides temperature that control root dynamics in tropical mountain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号