共查询到20条相似文献,搜索用时 15 毫秒
1.
NMR determination of the conformational and drug binding properties of the DNA heptamer d(GpCpGpApApGpC) in aqueous solution. 下载免费PDF全文
1D and 2D NMR spectroscopy (500/600 MHz) has been used to investigate the equilibrium conformational states of the deoxyheptanucleotide 5'-d(GpCpGpApApGpC), as well as its complexation with the phenanthridinium drug ethidium bromide (EB). Quantitative determination (reaction constants and thermodynamic parameters) of the conformational equilibrium of the heptamer in solution and its complexation with EB was based on analysis of the dependence of proton chemical shifts on concentration (at two temperatures, 298 and 308 K) and on temperature (in the range 278-353 K). The experimental results were analysed in terms of a model of the dynamic equilibrium between single-stranded, hairpin and bulged dimer forms of the deoxyheptanucleotide and its complexes with EB. Calculation of the relative amounts of the different complexes reveals important features of the dynamic equilibrium as a function of both temperature and the ratio of the drug and heptamer concentrations. The quantitative analysis also provides the limiting proton chemical shifts of EB in each complex which have been used to determine the most favourable structures of the intercalated complexes of EB with the (GC) sites of both the hairpin and dimer forms of the heptanucleotide. 相似文献
2.
Abstract Deoxyadenosine has been converted to 6.15N deoxyadenosine, which in turn has been transformed to 1-15N deoxyadenosine. Each of these 15N derivatives was then incorporated into the hexanucleoside pentaphosphate d(CGTACG) via a phosphoramidite procedure. The monomers and die hexamers were characterized by 1H and 15N nmr. 相似文献
3.
J M Pieters E de Vroom G A van der Marel J H van Boom C Altona 《European journal of biochemistry》1989,184(2):415-425
The self-complementary octamers d(CGCTAGCG) and d(CGaCTAGCG) (aC, arabinofuranosylcytidine) were studied by means of NMR spectroscopy. It is shown that d(CGaCTAGCG), under suitable conditions of oligonucleotide concentration, ionic strength and temperature, exclusively adopts a hairpin structure. However, under the same experimental conditions (5 mM DNA, no added salt, 295 K) d(CGCTAGCG) mainly adopts a B-DNA-type duplex. At lower temperatures (less than or equal to 290 K) the hairpin form of d(CGaCTAGCG) occurs in slow exchange with an intact B-DNA-type duplex. When the DNA concentration of d(CGCTAGCG) is dramatically reduced (less than or equal to 0.5 mM) the hairpin form becomes highly favoured at the expense of the dimer. Moreover, proton-chemical-shift considerations indicate that the structural features of the hairpin structure of d(CGCTAGCG) mimic, in part, those of the modified octamer d(CGaCTAGCG), i.e. a loop comprising only the two central residues with the thymine located into the minor groove (Pieters, J. M. L., de Vroom, E., van der Marel, G. A., van Boom, J. H., Koning, T. M. G., Kaptein, R. and Altona, C. unpublished results). Thermodynamic analysis of d(CGCTAGCG) yields an average Tmd value of 342 K (1 M DNA) and a delta Hod value of -266 kJ/mol for the dimer/coil transition and an average Tmh value of 321 K and delta Hoh - 102 kJ/mol for the hairpin/coil equilibrium. For the duplex/coil equilibrium of d(CGaCTAGCG) an average Tmd value of 336 K (1 M DNA) and delta Hod value of -253 kJ/mol are deduced. The hairpin/coil transition of d(CGaCTAGCG) is characterized by a delta Hoh value of -104 kJ/mol and an average Tmh value of 331 K. It is concluded that incorporation of an arabinofuranosylcytidine in the octamer d(CGaCTAGCG) results in stabilization of the hairpin form, whereas the dimer is destablized by two aC.dG base pairs. 相似文献
4.
The three-dimensional structure of a DNA hairpin in solution two-dimensional NMR studies and structural analysis of d(ATCCTATTTATAGGAT) 总被引:11,自引:0,他引:11
M J Blommers F J van de Ven G A van der Marel J H van Boom C W Hilbers 《European journal of biochemistry》1991,201(1):33-51
The hairpin formed by d(ATCCTATTTATAGGAT) was studied by means of two-dimensional NMR spectroscopy and conformational analysis. Almost all 1H resonances of the stem region could be assigned, while the 1H and 31P spectra of the loop region were interpreted completely; this includes the stereospecific assignment of the H5' and H5" resonances. The derivation of the detailed loop structure was carried out in a stepwise fashion including some improved and new methods for structure determination from NMR data. In the first step, the mononucleotide structures were examined. The conformational space available to the mononucleotide was scanned systematically by varying the glycosidic torsion angle and pseudorotational parameters. Each generated conformer was tested against the experimental J coupling constants and NOE parameters. In the following stage, the structures of dinucleotides and longer fragments were derived. Inter-residue distances between protons were calculated by means of a procedure in which the simulated NOEs, obtained via a relaxation-matrix approach, were fitted to the experimental NOEs without the introduction of a molecular model. In addition, the backbone torsion angles beta, gamma and epsilon were deduced from homocoupling and heterocoupling constants. These data served as constraints in the next step, in which the loop sequence was subjected to a multi-conformer generation procedure. The resulting structures were tested against the mentioned constraints and disregarded if these constraints were violated. This yielded a family of structures for the loop region, confined to a relatively narrow conformational space. A representative conformation was subsequently docked on a B-type stem which fulfilled the structural constraints (derived from the NMR experiments for the stem region) to yield the hairpin structure. Results obtained from subsequent restrained-molecular-mechanics as well as free-molecular-mechanics calculations are in accordance with those obtained by means of the analysis described above. The structure of the hairpin loop is a compactly folded conformation and the first base of the central TTTA region forms a Hoogsteen T-A pair with the fourth base. This Hoogsteen base pair is stacked upon the sixth base pair of the B-type double-helical stem. The second base of the loop is folded into the minor groove, whereas the third base of the loop is partly stacked on the first and fourth bases. The phosphate backbone exhibits a sharp turn between the third and fourth nucleotides of the loop. The peculiar structure of this hairpin loop is discussed in relation to loop folding in DNA and RNA hairpins and in relation to a general model for loop folding. 相似文献
5.
Extra thymidine stacks into the d(CTGGTGCGG).d(CCGCCCAG) duplex. An NMR and model-building study. 总被引:3,自引:2,他引:1 下载免费PDF全文
Y T van den Hoogen A A van Beuzekom H van den Elst G A van der Marel J H van Boom C Altona 《Nucleic acids research》1988,16(7):2971-2986
NMR and model-building studies were carried out on the duplex d(CTGGTGCGG).d(CCGCCCAG), referred to as (9+8)-mer, which contains an unpaired thymidine residue. Resonances of the base and of several sugar protons of the (9+8)-mer were assigned by means of a NOESY experiment. Interresidue NOEs between dG(4) and dT(5) as well as between dT(5) and dG(6) provided evidence that the extra dT is stacked into the duplex. Thermodynamic analysis of the chemical shift vs temperature profiles yielded an average TmD value of 334 K and delta HD of -289 kJmol-1 for the duplex in equilibrium random-coil transition. The shapes of the shift profiles as well as the thermodynamic parameters obtained for the extra dT residue and its neighbours again indicate that the unpaired dT base is incorporated inside an otherwise intact duplex. This conclusion is further supported by (a) the observation of an imino-proton resonance of the unpaired dT; (b) the relatively small dispersion in 31P chemical shifts (approximately 0.5 ppm) for the (9+8)-mer, which indicates the absence of t/g or g/t combinations for the phosphate diester torsion angles alpha/zeta. An energy-minimized model of the (9+8)-mer, which fits the present collection of experimental data, is presented. 相似文献
6.
The oligonucleotide d(A5C5) in solution forms a parallel self-duplex at neutral and low pH values. H2O NMR spectra at pH 5.1 indicate the presence of five imino resonances at lower temperatures; and the structure is stable up to 60 degrees C. These signals can arise only from the hemiprotonated C+.C pairs [Westhof, E. and Sundaralingham, M. (1980) Biochemistry 77, 1852-1856; Westhof, E. and Sundaralingham, M. (1980) J. Mol. Biol. 142, 331-361] and constitute the first direct observation of C+.C hemiprotonated pairs in solution. The cross peaks from H1's and more than five distinct AH8's in 500 MHz 1H 2D-NOESY spectra indicate that there are two conformationally different and energetically similar A-tracts. There is good qualitative agreement between NOESY data and two theoretically derived structures in which A-tracts are reverse Watson-Crick and reverse Hoogsteen base-paired, respectively. 相似文献
7.
A Kumar 《Biochemistry international》1991,23(3):467-479
Conformational studies on three DNA-oligomers (d(CGCGCGTTAATT), d(CGCGTTAA) and d(CGCGCGTT) in solution by circular dichroism spectroscopy are reported. In low salt solution, all three DNA oligomers exhibit a characteristic B-conformation. However, under the influence of high salt concentration i.e. 5M NaCl, the octamer d(CGCGCGTT) exhibits 'A' conformation whereas the decamer and dodecamer retain B-conformation. On addition of millimolar amount of NiCl2 to the 5M NaCl, solution of oligodeoxynucleotides a B-Z transition is observed in octamer, decamer and dodecamer. However, NiCl2 titrations show that mid point of transition for dodecamer is at 2.25 mM, for decamer is at 13 mM NiCl2 and for octamer is 17 mM at NiCl2. In 60% alcohol all three oligonucleotides remain in the B-conformation. The melting temperatures of oligonucleotides at various salt concentration are also reported. Thermodynamic parameters calculated by melting profile using a two state model show that dodecamer and decamer are most stable in their 5M NaCl, B-form. However, octamer is more stable in its Z form than that of its 'A' form. 相似文献
8.
When d(T-A) is irradiated at 254 nm in aqueous solution an internal photoadduct is formed between its constituent adenine and thymine bases. The resultant photoproduct, designated TA*, arises from a singlet excited state precursor; a similar photoreaction is not observed with d(C-A) or d(T-G). In contradistinction, irradiation of d(T-A) in frozen aqueous solution yields a dimeric photoproduct in which two d(T-A) molecules are coupled together by a (6-4) photoadduct linkage between their respective thymine bases. Both photoproducts have been extensively characterised by a combination of electron impact and fast atom bombardment mass spectrometry, UV, CD, 1H NMR and fluorescence spectroscopy. Acid treatment of TA* gives 6-methylimidazo[4,5-b]pyridin-5-one whose identity was established by an independent chemical synthesis involving photorearrangement of 6-methyl-imidazo[4,5-b]pyridine N(4)-oxide. A tentative mechanism is presented to account for the acid degradation of TA*. The structure of the dimeric ice photoproduct follows from its cleavage, by snake venom phosphodiesterase, to 5'-dAMP and the (6-4) bimolecular photoadduct of thymidine; on acid hydrolysis it gives adenine and 6-(5'-methyl-2'-oxopyrimidin-4'-yl) thymine. 相似文献
9.
One- and two-dimensional nuclear Overhauser effect experiments demonstrate that a single hydrogen bond between a T imino proton and purine N3 is sufficient to hold the base pair dPu.dT in d(CGPuAATTTCG) by a Watson-Crick fashion rather than a Hoogsteen type. In addition, the dPu.dT base pair is well stacked with neighboring base pairs. The spin-lattice relaxation measurements at 30 and 35 degrees C of two decamers, d(CGPuAATTTCG) and d(CGAAATTTCG), reveal that the elimination of two single hydrogen bonds of dA.dT base pairs (due to the substitution of adenine for purine) in the sequence results in an increase in the overall imino proton exchange rate from 7 to 36 s-1 at the site of mismatch. 相似文献
10.
The 1H NMR chemical shifts, vicinal coupling constants, temperature coefficients, and exchange rates of the hydroxy protons of a Lewis b tetrasaccharide derivative, alpha-L-Fucp-(1 --> 2)-beta-D-Galp-(1 --> 3)[alpha-L-Fucp-(1 --> 4)]-beta-D-GlcpNAc-1-O(CH2)2NHCOCHCH2, have been measured in aqueous solution. The data did not show any evidence for persistent hydrogen bonds participating in the stabilization of the structure. While most of the hydroxy proton signals have chemical shifts similar to those of the corresponding methyl glycosides, four of them, O(3)H, O(4)H, and O(6)H of Galp, and O(2)H of the Fucp linked to GlcpNAc, exhibit large upfield shifts. This shielding effect has been attributed to the orientation of the hydroxy protons toward the amphiphilic region constituted by the hydroxy groups of the Galp residue and mainly the ring and methyl hydrogens of the Fucp unit attached to the GlcpNAc. The close face to face stacking interaction between the Fucp linked to the GlcpNAc and the Galp residues, as well as the steric interaction between the Fucp linked to the Galp and the GlcpNAc are confirmed by the additional inter-residue NOEs of the exchangeable protons in sugar units which are not directly connected. 相似文献
11.
The1H nuclear magnetic resonance (NMR) spectra of angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) and five of its octapeptide analogs as well as angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) and angiotensin III (Arg-Val-Tyr-Ile-His-Pro-Phe) in aqueous solutions (90% H2O/10% D2O) were completely assigned by two-dimensional COSY and ROESY experiments. All of the peptides give rise to two distinct sets of signals. The minor set accounts for about 5% of the total population belowpH 5.5 and increases to 12–20% aroundpH 7.0. The two sets of signals result from acis-trans isomerization of the His-Pro peptide bond with the major resonances arising from thetrans isomer. One analog in which the Pro is replaced with a D-Pro displays a very different isomerization behavior. The measured coupling constants JNH-CH, the temperature dependence of the amide proton shifts and the relative intensities of the intraresidue and sequential NH-CH ROEs, are all indicative of an extended backbone conformation for ANGII. However, some evidence for the existence of conformers with local structure involving preferred sidechain positions for the Tyr, His, Phe, and the carboxyl group of the Phe was found, particularly in the ROESY andpH-titration experiments. Moreover,pH effects and the unusual amide exchange behavior of the Arg NH suggests the presence of interactions between the Asp and Arg sidechains of ANGII. At low temperatures the Arg guanidinium NH2 protons were detected as two broad peaks which are related by sizeable exchange peaks in ROESY experiments. This behavior could be useful as a general probe for the study of Arg sidechain mobility and accessibility in other peptides and proteinsPreliminary results of this work have been presented at the XIIth International Conference on Magnetic Resonance in Biological Systems in abstract form (1988). 相似文献
12.
Minor groove hydration of DNA in aqueous solution: sequence-dependent next neighbor effect of the hydration lifetimes in d(TTAA)2 segments measured by NMR spectroscopy. 下载免费PDF全文
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences. 相似文献
13.
F C Marincola M Casu G Saba A Lai P del Vecchio G Barone 《International journal of biological macromolecules》2001,29(4-5):237-241
The 23Na NMR quadrupolar relaxation in NaDNA aqueous solutions has been investigated in the presence of D(+) and L(-) arabitol. Quite different results were produced by the enantiomers, i.e. the addition of D(+) arabitol produced a small increase of the 23Na NMR relaxation rates, while in the presence of L(-) arabitol a significant decrease was observed. These findings were analysed and discussed in terms of an effective interaction of L(-) arabitol with DNA. 相似文献
14.
DNA hairpin structures in solution: 500-MHz two-dimensional 1H NMR studies on d(CGCCGCAGC) and d(CGCCGTAGC) 总被引:4,自引:0,他引:4
G Gupta M H Sarma R H Sarma R Bald U Engelke S L Oei R Gessner V A Erdmann 《Biochemistry》1987,26(24):7715-7723
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins. 相似文献
15.
M H Sarma J Luo K Umemoto R D Yuan R H Sarma 《Journal of biomolecular structure & dynamics》1992,9(6):1131-1153
The oligonucleotide d(G5T5) can in principle form a fully matched duplex with G.T pairing and/or a tetraplex. Non-denaturing gel electrophoresis, circular dichroism and NMR experiments show that the tetraplex is exclusively formed by this oligomer in solution. In the presence of its complementary strand d(A5C5) at low temperature, d(G5T5) forms the tetraplex over the normally expected Watson-Crick duplex. However, when d(G5T5) and d(A5C5) are mixed together in equimolar amounts and heated for several minutes at 85 degrees C, and then allowed to cool, the product was essentially the Watson-Crick duplex. The lack of resolution in the 500 MHz 1H NMR spectra and the presence of extensive spin diffusion do not allow us to derive a quantitative structure for the tetraplex from the NMR data. However, we find good qualitative agreement between the NOESY and MINSY data and a theoretically derived stereochemically sound structure in which the G's and T's are part of a parallel tetraplex. 相似文献
16.
Sequence-dependent conformation of DNA duplexes. The AATT segment of the d(G-G-A-A-T-T-C-C) duplex in aqueous solution 总被引:3,自引:0,他引:3
The nonexchangeable base and sugar protons of the octanucleotide d(G-G-A-A-T-T-C-C) have been assigned by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) methods in aqueous solution. The assignments are based on distance connectivities of less than 4.5 A established from NOE effects between base and sugar protons on the same strand and occasionally between strands, as well as, coupling connectivities within the protons on each sugar ring. We observe the NOEs to exhibit directionality and are consistent with the d(G-G-A-A-T-T-C-C) duplex adopting a right-handed helix in solution. The relative magnitude of the NOEs between base and sugar H2' protons of the same and 5'-adjacent sugars characterizes the AATT segment to the B-helix type in solution. 相似文献
17.
Twelve dinucleotides (one complete turn) of left-handed, flexible, double-helix poly(dG-dC) Z-DNA have been simulated in aqueous solution with K+ counterions for 70 ps. Most of the d(GpC) phosphates have rotated in accordance with a ZI----ZII transition. The ZII conformation was probably partly stabilized by counterions, which coordinate one of the anionic oxygens and the guanine-N7 of the next (5'----3' direction) base. The presence of base-coordinating ions close to the helical axis rotated and pulled about half of the d(CpG) phosphates further into the groove. These ions also gave rise to rather large deviations from the crystal structure (ZI) with their tendency of pulling the bases closer toward the helical axis. A flipping of the orientation about the glycosyl bond from the +sc to the -sc region was observed for one guanosine, also leading to deviations from the crystal structure. Many bridges containing one or two water molecules were found, with a dominance for the latter. They essentially formed a network of intra- and interstrand bridges between anionic and esterified phosphate oxygens. A "spine" of water molecules could be distinguished as a dark zig-zag pattern in the water density map. The lifetime of a bridge containing one water was about twice as long as that of a two-water bridge and it lasted 5-15 times longer than a hydrogen bond in water. The lifetimes were also calculated for a selection of bridge types, in order of decreasing stability: O1P/O2P ... W ... O'4 much greater than O1P/O2P ... W ... guanine-N2 greater than O1P/O2P ... W ... O1P/O2P. The reorientational motion of water molecules in the first hydration shell around selected groups was slowed down considerably compared to bulk water and the decreasing order of correlation times was guanine-N2 greater than O'4 greater than O'3/O'5 greater than O1P/O2P. 相似文献
18.
The conformation of the d(ACCCGGGT) duplex in aqueous solution 总被引:2,自引:0,他引:2
The nonexchangeable base and sugar protons of the octanucleotide d(ACCCGGGT)2 have been assigned using two dimensional homonuclear Hartmann-Hahn relayed spectroscopy (HOHAHA), double quantum filtered homonuclear correlation spectroscopy (DQFCOSY) and nuclear Overhauser spectroscopy (NOESY) in D2O at 12 degrees C. The observed NOE's between the base protons and their own H2' protons and between the base protons and the H2' protons of the 5' adjacent nucleotide and the observed coupling constants between the deoxyribose 1' and 2',2' protons indicate that this duplex assumes a right-handed B-type helix conformation in solution. 相似文献
19.
We have investigated the structures of two kinds of single-stranded DNA fragments, d(CGGCGAAAGCCG) and d(CGGCAAAAGCCG), by use of NMR spectroscopy. It was found that the former takes a hair-pin like structure stabilized by hydrogen bonding of G/C base pairs in the stem region, while the latter takes a rather extended helical structure. The stable conformation of the former DNA is considered to originate from the stability of the sequence-specific conformation of the loop region rather than the stem region. 相似文献
20.
Novel solution conformation of DNA observed in d(GAATTCGAATTC) by two-dimensional NMR spectroscopy 总被引:4,自引:0,他引:4
Resonance assignments of nonexchangeable base and sugar protons of the self-complementary dodecanucleotide d(GAATTCGAATTC) have been obtained by using the two-dimensional Fourier transform NMR methods correlated spectroscopy and nuclear Overhauser effect spectroscopy. Conformational details about the sugar pucker, the glycosidic dihedral angle, and the overall secondary structure of the molecule have been derived from the relative intensities of cross peaks in the two-dimensional NMR spectra in aqueous solution. It is observed that d(GAATTCGAATTC) assumes a novel double-helical structure. The solution conformations of the two complementary strands are identical, unlike those observed in a related sequence in the solid state. Most of the five-membered sugar rings adopt an unusual O1'-endo geometry. All the glycosidic dihedral angles are in the anti domain. The AATT segments A2-T5 and A8-T11 show better stacking compared to the rest of the molecule. These features fit into a right-handed DNA model for the above two segments, with the sugar geometries different from the conventional ones. There are important structural variations in the central TCG portion, which is known to show preferences for DNase I activity, and between G1-A2 and G7-A8, which are cleavage points in the EcoRI recognition sequence. The sugar puckers for G1 and G7 are significantly different from the rest of the molecule. Further, in the three segments mentioned above, the sugar phosphate geometry is such that the distances between protons on adjacent nucleotides are much larger than those expected for a right-handed DNA. We suggest that such crevices in the DNA structure may act as "hot points" in initiation of protein recognition. 相似文献