首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pituitary is a rich source of peptidylglycine alpha-amidating monooxygenase (PAM). This bifunctional protein contains peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalytic domains necessary for the two-step formation of alpha-amidated peptides from their peptidylglycine precursors. In addition to the four forms of PAM mRNA identified previously, three novel forms of PAM mRNA were identified by examining anterior and neurointermediate pituitary cDNA libraries. None of the PAM cDNAs found in pituitary cDNA libraries contained exon A, the 315-nucleotide (nt) segment situated between the PHM and PAL domains and present in rPAM-1 but absent from rPAM-2. Although mRNAs of the rPAM-3a and -3b type encode bifunctional PAM precursors, the proteins differ significantly. rPAM-3b lacks a 54-nt segment encoding an 18-amino acid peptide predicted to occur in the cytoplasmic domain of this integral membrane protein; rPAM-3a lacks a 204-nt segment including the transmembrane domain and encodes a soluble protein. rPAM-5 is identical to rPAM-1 through nt 1217 in the PHM domain; alternative splicing generates a novel 3'-region encoding a COOH-terminal pentapeptide followed by 1.1 kb of 3'-untranslated region. The soluble rPAM-5 protein lacks PAL, transmembrane, and cytoplasmic domains. These three forms of PAM mRNA can be generated by alternative splicing. The major forms of PAM mRNA in both lobes of the pituitary are rPAM-3b and rPAM-2. Despite the fact that anterior and neurointermediate pituitary contain a similar distribution of forms of PAM mRNA, the distribution of PAM proteins in the two lobes of the pituitary is quite different. Although integral membrane proteins similar to rPAM-2 and rPAM-3b are major components of anterior pituitary granules, the PAM proteins in the neurointermediate lobe have undergone more extensive endoproteolytic processing, and a 75-kDa protein containing both PHM and PAL domains predominates. The bifunctional PAM precursor undergoes tissue-specific endoproteolytic cleavage reminiscent of the processing of prohormones.  相似文献   

2.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalyzes the second step of the reaction. Previous studies demonstrated that alternative splicing results in the production of bifunctional PAM proteins that are integral membrane or soluble proteins as well as soluble monofunctional PHM proteins. Rat PAM is encoded by a complex single copy gene that consists of 27 exons and encompasses more than 160 kilobases (kb) of genomic DNA. The 12 exons comprising PHM are distributed over at least 76 kb genomic DNA and range in size from 49-185 base pairs; four of the introns within the PHM domain are over 10 kb in length. Alternative splicing in the PHM region can result in a truncated, inactive PHM protein (rPAM-5), or a soluble, monofunctional PHM protein (rPAM-4) instead of a bifunctional protein. The eight exons comprising PAL are distributed over at least 19 kb genomic DNA. The exons encoding PAL range in size from 54-209 base pairs and have not been found to undergo alternative splicing. The PHM and PAL domains are separated by a single alternatively spliced exon surrounded by lengthy introns; inclusion of this exon results in the production of a form of PAM (rPAM-1) in which endoproteolytic cleavage at a paired basic site can separate the two catalytic domains. The exon following the PAL domain encodes the trans-membrane domain of PAM; alternative splicing at this site produces integral membrane or soluble PAM proteins. The COOH-terminal domain of PAM is comprised of a short exon subject to alternative splicing and a long exon encoding the final 68 amino acids present in all bifunctional PAM proteins along with the entire 3'-untranslated region. Analysis of hybrid cell panels indicates that the human PAM gene is situated on the long arm of chromosome 5.  相似文献   

3.
Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM(+/-)) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM(+/-) mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM(+/-) mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.  相似文献   

4.
The biosynthesis of alpha-amidated peptides from their glycine-extended precursors is catalyzed by the sequential action of peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The two enzymes are part of a bifunctional, integral membrane protein precursor, peptidylglycine alpha-amidating monooxygenase (PAM). The major forms of PAM mRNA in the adult rat atrium differ by the presence or absence of optional exon A, a 315-nucleotide segment separating the PHM and PAL domains. Using antipeptide antibodies specific to the PHM, exon A, PAL, and cytoplasmic domains of rat PAM, carbonate-washed atrial membranes were found to contain proteins corresponding to rPAM-1 and rPAM-2. Digestion of atrial membranes with a variety of endoproteinases released PHM and PAL catalytic activities. Dose-response curves indicated that both catalytic activities were extremely resistant to inactivation by trypsin. Endoproteolytic digestion of atrial membranes with trypsin, chymotrypsin, elastase, thermolysin, or endoproteinase Lys-C generated a 35-kDa PHM fragment. Digestion with trypsin, elastase, thermolysin, or endoproteinase Lys-C generated a 42-kDa PAL fragment. In contrast to the stability exhibited by the PHM and PAL domains, the cytoplasmic domain of PAM was destroyed by most of the enzymes; only digestion with endoproteinase Lys-C generated a stable fragment. Digestion with endoproteinase Arg-C removed the carboxyl-terminal tail from PAM but failed to release the PHM or PAL domains from the membranes. The PHM fragments generated by some of the endoproteinases showed a tendency to adhere to the membranes. Thus the bifunctional PAM protein consists of independent catalytic domains separated from each other and from the putative transmembrane domain by flexible regions accessible to attack by a wide variety of endoproteinases.  相似文献   

5.
Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed (Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controlled by both dimm and ap. Previous genetic analysis of animals deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or release is regulated by dopamine input.  相似文献   

6.
The production of alpha-amidated peptides from their glycine-extended precursors is a two-step process involving the sequential action of two catalytic domains encoded by the bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) precursor. The NH2-terminal third of the PAM precursor contains the first enzyme, peptidylglycine alpha-hydroxylating monooxygenase (PHM), a copper, molecular oxygen, and ascorbate-dependent enzyme. The middle third of the PAM precursor contains the second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The COOH-terminal third of the PAM precursor encodes a transmembrane domain and a hydrophilic domain that may form a cytoplasmic tail. Antisera to a peptide within the PAL domain were used to identify a 50-kDa protein as the major form of PAL in bovine neurointermediate pituitary granules. This 50-kDa PAL protein was purified and found to begin at Asp434 of bPAM, indicating that it could arise through endoproteolytic cleavage of the bPAM precursor at Lys432-Lys433. With alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine as the substrate, PAL exhibits a pH optimum of 5.0; enzymatic activity is inhibited by high concentrations of salt but is relatively resistant to thiol reagents and urea. PAL activity is inhibited by EDTA and restored by a number of divalent metals, including Cd2+, Cu2+, Zn2+, and Ca2+. Kinetic studies using alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine indicate that PAL has a Km of 38 microM and a turnover number of 220/s. Expression vectors encoding only the soluble PHM domain or the PAM precursor from which the PHM domain had been deleted were constructed. hEK293 cells transfected with the PHM vector exhibited a 10-fold increase in secretion of PHM activity with no PHM activity detectable in control or transfected cells. hEK293 cells transfected with the PAL vector exhibited a 2-fold increase in secretion of PAL activity and a 15-fold increase in cellular PAL activity. Most of the PAL activity produced by the transfected cells remained membrane-associated.  相似文献   

7.
Two versions of the touchscreen paired-associate learning (PAL) task have been developed for rodents: same PAL (sPAL) and different PAL (dPAL). These tasks are very important in studying murine models of Alzheimer’s disease and schizophrenia, and have also been used to test object-location memory in various studies. However, the relatively long time needed for the tasks (approx. 50 days for mice) limits their widespread use. By giving training that was more intensive with a higher number of trials, we shortened the time required for learning saturation in sPAL and dPAL to about one-third of the time required for the generally used protocol. Furthermore, by applying a reduced number of objects and trial types for sPAL, we developed a simplified version of sPAL, termed 2-object sPAL, in which mice could reach the fully learned level in 6 days. Our pharmacological experiments indicate that the dorsal hippocampal CA1 region is crucial for the performance of the two PAL tasks with the new protocols and the new 2-object sPAL. This work has significantly enhanced the usefulness of the touchscreen PAL tasks to increase the speed of learning, but they remain highly hippocampus-dependent object-location memory tasks.  相似文献   

8.
Cnidarians are primitive animals that use neuropeptides as their transmitters. All the numerous cnidarian neuropeptides isolated, so far, have a carboxy-terminal amide group that is essential for their actions. This strongly suggests that alpha-amidating enzymes are essential for the functioning of primitive nervous systems. In mammals, peptide amidation is catalyzed by two enzymes, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) that act sequentially. These two activities are contained within one bifunctional enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), which is coded for by a single gene. In a previous paper (F. Hauser et al., Biochem. Biophys. Res. Commun. 241, 509-512, 1997) we have cloned the first known cnidarian PHM from the sea anemone Calliactis parasitica. In the present paper we have determined the structure of its gene (CP1). CP1 is >12 kb in size and contains 15 exons and 14 introns. The last coding exon (exon 15) contains a stop codon, leaving no room for PAL and, thereby, for a bifunctional PAM enzyme as in mammals. Furthermore, we found a CP1 splicing variant (CP1-B) that contains exon-9 instead of exon-8, which was present in the previously characterized PHM cDNA (CP1-A). CP1-A and -B have 97% amino acid sequence identity, whereas both splicing variants have around 42% sequence identity with the PHM part of rat PAM. Essential amino acid residues for the catalytic activity and the 3D structure of PHM are conserved between CP1-A, -B and the PHM part of rat PAM. Furthermore, eight introns in CP1 occur in the same positions and have the same intron phasing as eight introns in the rat PAM gene, showing that the sea anemone PHM is not only structurally, but also evolutionarily related to the PHM part of rat PAM.  相似文献   

9.
To understand the roles of secretory peptides in developmental signaling, we have studied Drosophila mutant for the gene peptidylglycine alpha-hydroxylating monooxygenase (PHM). PHM is the rate-limiting enzyme for C-terminal alpha-amidation, a specific and necessary modification of secretory peptides. In insects, more than 90% of known or predicted neuropeptides are amidated. PHM mutants lack PHM protein and enzyme activity; most null animals die as late embryos with few morphological defects. Natural and synthetic PHM hypomorphs revealed phenotypes that resembled those of animals with mutations in genes of the ecdysone-inducible regulatory circuit. Animals bearing a strong hypomorphic allele contain no detectable PHM enzymatic activity or protein; approximately 50% hatch and initially display normal behavior, then die as young larvae, often while attempting to molt. PHM mutants were rescued with daily induction of a PHM transgene and complete rescue was seen with induction limited to the first 4 days after egg-laying. The rescued mutant adults produced progeny which survived to various stages up through metamorphosis (synthetic hypomorphs) and displayed prepupal and pupal phenotypes resembling those of ecdysone-response gene mutations. Examination of neuropeptide biosynthesis in PHM mutants revealed specific disruptions: Amidated peptides were largely absent in strong hypomorphs, but peptide precursors, a nonamidated neuropeptide, nonpeptide transmitters, and other peptide biosynthetic enzymes were readily detected. Mutant adults that were produced by a minimal rescue schedule had lowered PHM enzyme levels and reproducibly altered patterns of amidated neuropeptides in the CNS. These deficits were partially reversed within 24 h by a single PHM induction in the adult stage. These genetic results support the hypothesis that secretory peptide signaling is critical for transitions between developmental stages, without strongly affecting morphogenetic events within a stage. Further, they show that PHM is required for peptide alpha-amidating activity throughout the life of Drosophila. Finally, they define novel methods to study neural and endocrine peptide biosynthesis and functions in vivo.  相似文献   

10.
Primary cultures of neonatal rat atrial and ventricular cardiomyocytes were used to investigate the expression of peptidylglycine alpha-amidating monooxygenase (PAM), a bifunctional enzyme required for the production of alpha-amidated neuroendocrine peptides. The use of assays for the individual enzymes, peptidylglycine alpha-amidating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), demonstrated that the levels of expression observed in vitro approximated those observed in vivo. Both in vivo and in vitro, atrial and ventricular PAL activity greatly exceeded PHM activity. Atrial and ventricular cardiomyocytes secreted PHM and PAL activity at a constant rate throughout the culture period. Immunofluorescence studies localized PAM proteins to the perinuclear region, with intense punctate staining. Both in vivo and in vitro, PAM mRNAs encoding integral membrane proteins predominated throughout the neonatal period, with PAM-1 mRNA becoming more prevalent after the first week in culture. Although PAM-2 mRNA decreased in prevalence in vivo at the time when PAM-1 expression increased, levels of PAM-2 mRNA remained elevated throughout 2 weeks in vitro. Western blot analysis demonstrated intact PAM-1 and PAM-2 proteins in atrial cultures, with the prevalence of PAM-1 increasing in older cultures. Atrial cardiomyocytes secreted only bifunctional PAM proteins. Many of the features of PAM expression, processing, and storage that are unique to cardiomyocytes as opposed to endocrine cells are faithfully replicated by primary atrial and ventricular cultures.  相似文献   

11.
Drosophila Crumbs and the mammalian homologues encoded by the Crb genes are transmembrane proteins required for determination of retinal cell polarity. We cloned a novel variant of mouse Crb1 and termed it Crb1s. Since the 3'-end of exon 6 remained unspliced, Crb1s coded for a short secretory protein lacking the transmembrane and cytoplasmic domains required for the function of Crb1. The Crb1 expression was confined to brain and eye, whereas Crb1s was detectable in various tissues including skin, lung, and kidney in adult mice. Active expression of Crb1s, but not Crb1, was observed during the skin development, in which localization of the Crb1s protein was altered from the basal layer to the upper layers. Cultured mouse keratinocytes synthesized the Crb1s protein and secreted a 80 kDa processed form to the supernatant. After Ca(2+)-induced differentiation, Crb1s became associated with focal adhesions and cell-cell contacts. Crb1s may play a role distinct from that of Crb1 in epidermal tissue morphogenesis.  相似文献   

12.
Yu HH  Huang AS  Kolodkin AL 《Genetics》2000,156(2):723-731
Semaphorins comprise a large family of phylogenetically conserved secreted and transmembrane glycoproteins, many of which have been implicated in repulsive axon guidance events. The transmembrane semaphorin Sema-1a in Drosophila is expressed on motor axons and is required for the generation of neuromuscular connectivity. Sema-1a can function as an axonal repellent and mediates motor axon defasciculation. Here, by manipulating the levels of Sema-1a and the cell adhesion molecules fasciclin II (Fas II) and connectin (Conn) on motor axons, we provide further evidence that Sema-1a mediates axonal defasciculation events by acting as an axonally localized repellent and that correct motor axon guidance results from a balance between attractive and repulsive guidance cues expressed on motor neurons.  相似文献   

13.
alpha-Amidation is catalyzed by two enzymatic activities, peptidyl-glycine alpha-hydroxylating mono-oxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), denoted collectively as peptidyl-glycine alpha-amidating mono-oxygenase (PAM), which also may include transmembrane and cytoplasmic domains. PAM is present in mammalian pancreas, where it appears to be abundant in the perinatal period. Nevertheless, there is no agreement on the cell type(s) that produces PAM or even on its presence in adults. In the present study we found PAM (PHM and cytoplasmic domain) immunoreactivity (IR) in A-, B-, and D-cells of adult mouse pancreas. In contrast to previous reports, PAM IR was found in B-cells of human and rat. Most of the B/D-cells were PAM immunoreactive, although with variable intensity, whereas less than half of A-cells displayed IR. Immunocytochemistry and Western blotting suggested the existence of different PAM molecules. Differences in the cellular distribution of IR for PAM domains were also observed. Whereas PHM-IR was extended throughout the cytoplasm in the three cell types, presumably in the secretory granules, IR for the cytoplasmic domain in A/D-cells was restricted to a juxtanuclear region, perhaps indicating its cleavage in Golgi areas. Although glucagon, insulin, and somatostatin are non-amidated, amidated peptides (glucagon-like peptide 1, adrenomedullin, proadrenomedullin N-terminal 20 peptide) were found in the three cell types.  相似文献   

14.
Drosophila Down syndrome cell adhesion molecule (Dscam) potentially produces more than 150,000 cell adhesion molecules that share two alternative transmembrane/juxtamembrane (TM) domains, which dictate the dendrite versus axon subcellular distribution and function of different Dscam isoforms. Vertebrate genomes contain two closely related genes, DSCAM and DSCAM-Like1 (DSCAML1), which do not have extensive alternative splicing. We investigated the functional conservation between invertebrate Dscams and vertebrate DSCAMs by cross-species rescue assays and found that human DSCAM and DSCAML1 partially, but substantially, rescued the larval lethality of Drosophila Dscam mutants. Interestingly, both human DSCAM and DSCAML1 were targeted to the dendrites in Drosophila neurons, had synergistic rescue effects with Drosophila Dscam[TM2], and preferentially rescued the dendrite defects of Drosophila Dscam mutant neurons. Therefore, human DSCAM and DSCAML1 are functionally conserved with Drosophila Dscam[TM1] isoforms.  相似文献   

15.
Despite advances in understanding the cell biology of glycoinositol phospholipid (GPI)-anchored proteins in cultured cells, the in vivo functions of GPI anchors have remained elusive. We have focused on Drosophila acetylcholinesterase (AChE) as a model GPI-anchored protein that can be manipulated in vivo with sophisticated genetic techniques. In Drosophila, AChE is found only as a GPI-anchored G2 form encoded by the Ace locus on the third chromosome. To pursue our goal of replacing wild-type GPI-anchored AChE with forms that have alternative anchor structures in transgenic files, we report the construction of two secreted forms of Drosophila AChE (SEC1 and SEC2) and a chimeric form (TM-AChE) anchored by the transmembrane and cytoplasmic domains of herpes simplex virus type 1 glycoprotein C. To confirm that the biochemical properties of these AChEs were unchanged from GPI-AChE except as predicted, we made stably transfected Drosophila Schneider Line 2(S2) cells expressing each of the four forms. TM-AChE, SEC1, and SEC2 had the same catalytic activity and quaternary structure as wild type. TM-AChE was expressed as an amphiphilic membrane-bound protein resistant to an enzyme that cleaves GPI-AChE (phosphatidylinositol-specific phospholipase C), and the same percentage of TM-AChE and GPI-AChE was on the cell surface according to immunofluorescence and pharmacological data. SEC1 and SEC2 were constructed by truncating the C-terminal signal peptide initially present in GPI-AChE: in SEC1 the last 25 residues of this 34-residue peptide were deleted while in SEC2 the last 29 were deleted. Both SEC1 and SEC2 were efficiently secreted and are very stable in culture medium; with one cloned SEC1-expressing line, AChE accumulated to as high as 100 mg/liter. Surprisingly, 5-10% of SEC1 was attached to a GPI anchor, but SEC2 showed no GPI anchoring. Since no differences in catalytic activity were observed among the four AChEs, and since the same percentage of GPI-AChE and TM-AChE were on the cell surface, we contend that in vivo experiments in which GPI-AChE is replaced can be interpreted solely on the basis of the altered anchoring domain.  相似文献   

16.
17.
Terman JR  Mao T  Pasterkamp RJ  Yu HH  Kolodkin AL 《Cell》2002,109(7):887-900
Members of the semaphorin family of secreted and transmembrane proteins utilize plexins as neuronal receptors to signal repulsive axon guidance. It remains unknown how plexin proteins are directly linked to the regulation of cytoskeletal dynamics. Here, we show that Drosophila MICAL, a large, multidomain, cytosolic protein expressed in axons, interacts with the neuronal plexin A (PlexA) receptor and is required for Semaphorin 1a (Sema-1a)-PlexA-mediated repulsive axon guidance. In addition to containing several domains known to interact with cytoskeletal components, MICAL has a flavoprotein monooxygenase domain, the integrity of which is required for Sema-1a-PlexA repulsive axon guidance. Vertebrate orthologs of Drosophila MICAL are neuronally expressed and also interact with vertebrate plexins, and monooxygenase inhibitors abrogate semaphorin-mediated axonal repulsion. These results suggest a novel role for oxidoreductases in repulsive neuronal guidance.  相似文献   

18.
Casso DJ  Liu S  Biehs B  Kornberg TB 《PloS one》2012,7(3):e33827
Intramembrane proteases of the Signal Peptide Peptidase (SPP) family play important roles in developmental, metabolic and signaling pathways. Although vertebrates have one SPP and four SPP-like (SPPL) genes, we found that insect genomes encode one Spp and one SppL. Characterization of the Drosophila sppL gene revealed that the predicted SppL protein is a highly conserved structural homolog of the vertebrate SPPL3 proteases, with a predicted nine-transmembrane topology, an active site containing aspartyl residues within a transmembrane region, and a carboxy-terminal PAL domain. SppL protein localized to both the Golgi and ER. Whereas spp is an essential gene that is required during early larval stages and whereas spp loss-of-function reduced the unfolded protein response (UPR), sppL loss of function had no apparent phenotype. This was unexpected given that genetic knockdown phenotypes in other organisms suggested significant roles for Spp-related proteases.  相似文献   

19.
20.
We report the purification and characterization of human bifunctional peptidylglycine alpha-amidating monooxygenase (the bifunctional PAM) expressed in Chinese hamster ovary cells. PAM is in charge of the formation of the C-terminal amides of biologically active peptides. The bifunctional PAM possesses two catalytic domains in a single polypeptide, peptidylglycine alpha-hydroxylating monooxygenase (PHM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PAL, EC 4.3.2.5). By introducing a stop codon at 835 Glu, we were able to eliminate the membrane-spanning domain in the C-terminal region and succeeded in purifying a soluble form of bifunctional PAM that was secreted into the medium. Through a three-step purification procedure, we obtained 0.3mg of the purified PAM, which showed a single band at 91 kDa on SDS-PAGE, from 1L of monolayer culture medium. Metals contained in the purified PAM were analyzed and chemical modifications were performed to gain insight into the mechanism of the PAL reaction. Inductively coupled plasma detected 0.62 mol of Zn(2+) and 1.25 mol of Cu(2+) per mol of bifunctional PAM. Further, the addition of 1mM EDTA reduced the PAL activity by about 50%, but the decreased activity was recovered by the addition of an excess amount of Zn(2+). In a series of chemical modifications, phenylglyoxal almost completely eliminated the PAL activity and diethyl pyrocarbonate suppressed activity by more than 70%. These findings implied that Arg and His residues might play crucial roles during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号