首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number and weight of cells in the cortical and subcortical structures of the cerebral and cerebellar motor system in albino rats after a long-term exposure to toluene were determined. Toluene intoxication proved to kill projection neurons and interneurons in the sensorimotor cortex, ventrolateral thalamic nucleus, caudate nucleus, pallidum, red nucleus, and inferior olivary complex. The decreased number of cerebellar cells was mediated by atrophic changes as indicated by the decrease in the area and dry weight of Purkinje cells. The addition of plaferon LB to the diet attenuated the cytotoxic effect of toluene.  相似文献   

2.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

3.
Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz), high gamma (~ 80 Hz) and high frequency (HFO, ~ 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of connectivity among the structures analyzed.  相似文献   

4.
In experiments with 112 male Wistar rats it was shown that accelerated electrons (85 Gy) caused a significant increase in activities of succinate dehydrogenase (SDG) by 15.8% and lactate dehydrogenase (LDG) by 17.0%, and a decrease in activities of alkaline phosphatase (AP) and monoamine oxidase (MAO) by 10.6 and 7.8% respectively within the sensorimotor region of the cerebral cortex immediately after irradiation. Activity of SDG and MAO decreased (by 16.4% and 7.8% respectively) in the caudate nucleus over the same period of time. An increase in the accelerated electron dose from 85 to 500 Gy did not change the direction and the rate of the radiation response of the enzymes. Exposure of rats to 60Co gamma quanta (75 Gy) increased SDG and LDG activity (by 21.4 and 17.3% respectively) within the sensorimotor cortex as late as 10 min after irradiation. A repeated significant increase in SDG and LDG activity was observed 2 hr after irradiation.  相似文献   

5.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

6.
Hemispheric asymmetry of nigro-striate system in a strain of rats GC bred from Wistar for a predisposition to cataleptic reaction was studied by means of biochemical and morphological methods. Hemispheric asymmetry was found in GC and Wistar rats with respect to aminopeptidase activity in neurons of caudate nucleus, with a more pronounced left-side increase in GC rats, the asymmetry index being 13.7%. Acetylcholine esterase activity in subcellular particles of caudate nucleus showed an inversion of asymmetry with higher activity in the left hemisphere of Wistar and right hemisphere of GC rats, and asymmetry index of 15.5%. With respect to the number of astroglia cells in S. nigra, and astroglia and oligodendroglia in N. accumbens there was also an inversion of asymmetry in GC rats who had more cells in the structures of the left hemisphere, whereas Wistar rats had more in the right hemisphere. The asymmetry index was high and equal to 29.8% for astroglia in S. nigra, and 17% for astroglia and 21.4% for oligodendroglia in N. accumbens. However, in S. nigra the number of neurons and oligodendroglia cells was equally increased in the right hemisphere in GC and Wistar rats. The data suggest that the mechanism of hereditary pathology of brain nigro-striate system involves both enhancement and inversion of the hemispheric asymmetry.  相似文献   

7.
The state of neurotransmitter systems was studied in the groups of Wistar rats discriminated by striving for alcohol and rejecting it after the information load (alimentary instrumental conditioning in a labyrinth). The specific activities of neurotransmitter metabolizing enzymes (MAO A and B, acetylcholinesterase, and acetylcholinetransferase) and the content of biogenic amines and their metabolites (serotonin, 5-hydroxyindoleacetic acid, noradrenaline, and dopamine) were measured in homogenates and subfractions of sensorimotor cortex and caudate nucleus. It was found out that the biochemical indices correlated with cognitive abilities of animals. Stress-resistant rats, which were capable for acquisition of the complex skill, refused alcohol after the information load and were characterized by activation of the brain neurotransmitter systems. The rats, which were unable to fulfill the cognitive task, began to abuse alcohol and were characterized by suppression of the neurotransmitter systems. It seems possible that the brain neurotransmitter metabolism adequately reflects the characteristics of the higher nervous activity of animals and their resistance to alcohol.  相似文献   

8.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

9.
Gershteĭn LM 《Ontogenez》2001,32(1):35-40
It was shown that animals that differ in behavioral characteristics (August and Wistar rats) also differ in neurotransmitter and protein metabolism, which can be considered as tests that adequately reflect the functional condition of the central nervous system. These differences are expressed at the level of both subcortical structures (hippocampus and caudate nucleus) and various morphofunctional types of the sensorimotor cortex neurons (layers III and V). Studies on genetically different animals strains have revealed metabolic features that allow determination of individual behavioral features and estimation of individual brain structures in these processes.  相似文献   

10.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

11.
Lithium oxybutyrate microinjections (10 mg/ml) produce a depressant action on spontaneous bioelectrical activity of the cortex and subcortical structure. The drug brings down excitability of the motor cortex, hippocampus, caudate nucleus, thalamus, posterior hypothalamus and mesencephalic reticular formation; it also raises excitability of the tonsils. The depressant effect of lithium oxybutyrate is superior to that of lithium chloride.  相似文献   

12.
Using the apomorphine-induced stereotyped gnawing response as a selection criterion, two distinct groups of rats can be distinguished, apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats. These two lines differ in several components of both striatal and extrastriatal areas. This study deals with the expression of neuropeptide Y (NPY)mRNA-expressing neurons in the nucleus accumbens, caudate putamen and cerebral cortex of both rat lines, using non-radioactive in situ hybridisation. The morphology of the neurons in the three regions is similar, viz. oblong, rectangular or triangular, with two or three processes. The neurons are homogeneously distributed in all regions, and in the nucleus accumbens they are particularly numerous ventrally to the anterior commissure. Using automated image analysis, the mean numerical density of NPYmRNA-positive neurons per brain region and the mean NPYmRNA expression level per neuron per brain region were determined. No differences appear in the numerical densities of NPYmRNA-containing neurons in the nucleus accumbens, caudate putamen and cortex between APO-SUS and APO-UNSUS rats. However, distinct differences between the rat lines are present in the level of NPYmRNA expression per neuron in the nucleus accumbens and in the caudate putamen, showing that NPY contributes to the differential neurochemical make-up of these rat lines that is responsible for their obvious differences in behaviour, physiology and immune competence.  相似文献   

13.
Regional distribution of glutamatergic activity was studied in the sensorimotor areas of the cat's brain, using microdissection of the structures and the high affinity glutamate uptake (HAGU) estimation as an index. For this purpose a procedure allowing the measurement of HAGU activity in sucrose homogenates of the microsamples dissected from refrigerated slices was developed. The highest glutamatergic activity was found in the ventral parts of the thalamus, followed by the caudate nucleus and the cerebral cortex. The mesencephalic structures showed the lowest glutamate (Glu) transport capacities among the regions of gray matter studied. Intranuclear investigations were carried out within the substantia nigra, the caudate nucleus and the red nucleus. Rostrocaudal variations in HAGU activity were shown within the red nucleus while no significant topographical variations were detected either in the substantia nigra or in the caudate nucleus.  相似文献   

14.
It was shown that animals that differ in behavioral characteristics (August and Wistar rats) also differ in neurotransmitter and protein metabolism, which can be considered as tests that adequately reflect the functional condition of the central nervous system. These differences are expressed at the level of both subcortical structures (the hippocampus and caudate nucleus) and various morphofunctional types of the sensorimotor cortex neurons (layers III and V). Studies on genetically different animals strains have revealed metabolic features that allow the determination of individual behavioral features and an estimation of individual brain structures in these processes.  相似文献   

15.
Rats were injected with 1 μg of alpha-melanocyte stimulating hormone (α-MSH) into the third ventricle and locally in the ventral tegmental area and in different regions of the substantia nigra. The modifications produced on grooming behavior and locomotion as well as on the dopamine content of the nucleus accumbens and the caudate putamen, were studied. Both intraventricular peptide administration and microinjections into the ventral tegmental area induced excessive grooming and a significant increase of the locomotor activity. The dopamine content of the nucleus accumbens and caudate putamen was markedly reduced. Injections of the peptide into the substantia nigra pars compacta failed to induce excessive grooming but did provoke a slight increase in locomotor activity and a smaller change in caudate dopamine content than that observed by injections in the ventral tegmental area or in the third ventricle. Dopamine levels in the nucleus accumbens were not changed. Finally, the injections of α-MSH into the lateral substantia nigra did not produce either biochemical or behavioral changes.The results suggests that α-MSH can modify, directly or indirectly, the striatal dopaminergic activity and that the behavioral alterations observed such as excessive grooming, could be mediated by the activation of the dopamine cells from the ventral tegmental area, that in turn may provoke a significative release of dopamine at the caudate putamen nucleus as well as in nucleus accumbens.  相似文献   

16.
Di Giannuario A  Pieretti S 《Peptides》2000,21(7):1125-1130
The effects induced by nociceptin on morphine-induced release of dopamine (DA), 3,4-dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and nucleus caudate were studied in rats by microdialysis with electrochemical detection. Nociceptin administered intracerebroventricularly (i.c.v.) at doses of 2, 5 and 10 nmol/rat changed neither DA nor metabolites release in the shell of the nucleus accumbens or in the nucleus caudate. Morphine administered intraperitoneally (i.p.) (2, 5, and 10 mg/kg) increased DA and metabolites release more in the shell of the nucleus accumbens than in the nucleus caudate. When nociceptin (5 or 10 nmol) was administered 15 min before morphine (5 or 10 mg/kg), it significantly reduced morphine-induced DA and metabolites release in the shell of the nucleus accumbens, whereas only a slight, nonsignificant reduction was observed in the nucleus caudate. Our data indicate that nociceptin may regulate the stimulating action associated with morphine-induced DA release more in the nucleus accumbens than in the nucleus caudate, and are consistent with recent observations that nociceptin reversed ethanol- and morphine-induced conditioned place preference. Therefore, the nociceptin-induced reduction of DA release stimulated by morphine in the nucleus accumbens, and the results obtained with nociceptin in the conditioned place preference procedure suggest a role for nociceptin in the modulation of the behavioral and neurochemical effects of abuse drugs.  相似文献   

17.
The activity of the key enzyme of serotonin biosynthesis--tryptophan-5-hydroxylase (T-5-H) was investigated in the synaptosomes of the motor cortex and caudate nucleus of the rabbit brain 30 min or 5 days after single injection of opioid tetrapeptidamide Tyr-D-Ala-Gly-Phe-NH2 (TPA). TPA was injected subcutaneously at a dose of 500 micrograms/kg of rabbit body weight. T-5-H activity in caudate nucleus synaptosomes was two times higher than that of the motor cortex synaptosomes and accounted for 159.67 and 80.84 pmoles of formed 5-hydroxytryptophan/mg protein per hour. 30 min after single injection of TPA the enzyme activity in the synaptosomes of the motor cortex and caudate nucleus decreased by 64.0 and 43.0%, respectively. 5 days following single TPA injection T-5-H activity in the motor cortex synaptosomes increased by 68.4% and in caudate nucleus synaptosomes decreased by 35.6%. Thus, it was established that TPA displayed a pronounced effect on T-5-H activity. The delayed effect of opioid TPA on T-5-H activity was discovered which was manifested on day 5 after the single injection. Possible mechanisms of TPA effect on T-5-H are discussed.  相似文献   

18.
Addiction to psychostimulants elicits behavioral and biochemical changes that are assumed to be mediated by alterations of gene expression in the brain. The changes in gene expression after 3 weeks of withdrawal from chronic cocaine treatment were evaluated in the nucleus accumbens core and shell, dorsal prefrontal cortex and caudate using a complementary DNA (cDNA) array. The level of mRNA encoded by several genes was identified as being up- or down-regulated in repeated cocaine versus saline subjects. The results from the cDNA array were subsequently confirmed at the protein level with immunoblotting. Of particular interest, parallel up-regulation in protein and mRNA was found for the adenosine A1 receptor in the accumbens core, neuroglycan C in the accumbens shell, and the GluR5 glutamate receptor subtype in dorsal prefrontal cortex. However, there was an increase in TrkB protein in the nucleus accumbens core of cocaine-treated rats without a corresponding alteration in mRNA. These changes of gene expression in corticolimbic circuitry may contribute to the psychostimulant-induced behavioral changes associated with addiction.  相似文献   

19.
The authors studied the effect of short-term (20 min) hypobaric hypoxia at simulated altitudes of 7000 and 9000 m on the peroxidation of lipids in the cerebral cortex, subcortical formations, medulla oblongata and cerebellum of the laboratory rat. In 5- and 21-day-old rats, increased lipoperoxidation was recorded in all the studied regions of the brain. Differences were observed in sensitivity to the degree of hypoxia. In 5-day-old rats the response to both exposures was the same, but in 21-day-old animals exposure at 7000 m stimulated peroxidation in the cerebral cortex only (at 9000 m in all the parts of the CNS examined). In 35-day-old and adult rats, changes in the malondialdehyde concentration were likewise found after exposure at 9000 m, but not in every compartment (in 35-day-old rats in the cerebral cortex and subcortical formations and in adult rats in the cerebral cortex). In young rats, 30 and 60 min after exposure to hypoxia the malondialdehyde concentration was still higher than in older animals.  相似文献   

20.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号