首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thaler  Philippe  Pagès  Loï c 《Plant and Soil》1999,217(1-2):151-157
When plants develop in strong soils, growth of the root system is generally depressed. However, branching and elongation of branches are often less affected than growth of the main axes, whenever the whole root system encounters even-impeded conditions. On the basis of a model simulating root growth and architecture as related to assimilate availability, we propose a simple hypothesis to explain such behaviour. In the model, growth of each root depends on its own elongation potential, which is estimated by its apical diameter. The potential elongation rate–apical diameter relationship is the same for all the roots of the system and is described by a monomolecular function. Our hypothesis is that the effect of soil strength can be simulated by introducing an impedance factor in the definition of root maximum potential elongation rate, common to the whole root system. When such impedance factor is applied, it affects more the potential of larger roots (main axes) than that of thinner roots (secondary and tertiary branches). Simulations provided in high impedance conditions led to root systems characterised by short taproots, whereas growth of secondary roots was unaffected and growth of tertiary roots was enhanced. Actual branching density was also higher, although branching rules have been unchanged. Such simulated systems where similar to that observed in strong soils. Friction laws or pore size can be involved in the larger reduction of the potential growth of main axes. Moreover, when growth of main axes is restricted, assimilate availability becomes higher for branches and that could explain that their growth could be increased in a homogeneous strong soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
BACKGROUND AND AIMS: Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. METHODS: Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. KEY RESULTS: An applied pressure of 15 kPa slowed root extension by 75% after 10-20 h while the same axes thickened by about 50%. The most terminal 2-3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21% O2), while unimpeded roots were only limited below 11% O2. CONCLUSIONS: The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to hypoxia even after soil was removed. Roots still encased in impeded soil are likely to suffer from marked O2 deficits.  相似文献   

3.
Increased levels of ethylene in plants are responsible for many deleterious effects such as early senescence, fruit deterioration and inhibition of root elongation. Several cyclopropene derivatives have previously been studied as inhibitors of ethylene action in plants. This study focuses on one such compound, 1-cyclopropenylmethyl butyl ether and its effect on the growth of roots and shoots of canola plants as well as rooting of mung bean seedlings 1-cyclopropenylmethyl butyl ether increased root length in canola plants, but had no significant effect on shoot length. In rooting studies, mung bean seedlings treated with 1-cyclopropenylmethyl butyl ether prior to root excision had fewer numbers of roots than control plants that were not treated with the ethylene action inhibitor. The same rooting study, when repeated in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC), demonstrated an overall increase in the number of roots of inibitor-treated and non-treated plants, however, the inhibitor was still effective in decreasing the number of roots, compared to its non-treated conterpart. Online publication: 7 April 2005  相似文献   

4.
The effects of mechanical stress on whole root systems was investigatedusing beds of solid glass spheres (ballotini) continuously suppliedwith aerated nutrient solution. As noted in earlier experiments,increased mechanical impedance slowed root extension and alteredcell size and number; it also caused distortion of the rootapex, stimulated growth of lateral shoot meristems, and inducedthe formation of nodal roots. The development of lateral branchroots was enhanced and where root axes curved around ballotinilateral roots formed preferentially on the outer (convex) sidewhereas root hairs developed on the inner (concave) side. After roots were relieved from mechanical stress at least 3d elapsed before the rate of extension growth equalled thatof unimpeded plants. When intact Zea mays root apices first made contact with ballotinitheir elongation was slowed by 70% for about 10 min; where rootcaps were removed before the roots made contact, no such effectswere seen. We discuss the general nature of the mechanism of response tomechanical stress.  相似文献   

5.
Bengough  A.G.  Gordon  D.C.  Al-Menaie  H.  Ellis  R.P.  Allan  D.  Keith  R.  Thomas  W.T.B.  Forster  B.P. 《Plant and Soil》2004,262(1-2):63-70
A simple gel chamber is described for measurement of seedling root traits. Seedlings are located between two closely spaced flat layers of transparent gel, on plastic plates (at least one of which is transparent). Root system traits can be non-destructively recorded in two-dimensions using a flatbed scanner. Easily measured rooting traits include root length, elongation rate, longest root, deepest root, seminal root number, and angular spread of roots. Examples of wild, landrace, and cultivated barleys were grown in the gel chambers, between gel layers or in loosely packed soil. Root growth on the gel plates was similar to that in loose soil, with the cultivated barley having the most seminal axes (about 7), and widest angular spread of roots (about 120 °), and wild barley the fewest seminal axes (about 3), and narrowest angular spread of roots (about 40 °). Landrace barley lines tested were intermediate between wild barley and modern cultivars. Separate experiments were performed to study the effect of grain mass and grain size on these rooting traits. These experiments included parents of genetic mapping populations. Seminal root number was most strongly dependent on grain mass in the modern cultivar Chime. Grain size significantly influenced root number in the modern cultivar Derkado, the breeding line B83-12/21/5, and a selection from a landrace Tadmor, suggesting that grain size should be controlled in any screening exercise.  相似文献   

6.
Roots of intact wheat plants were grown for 7-12 d in stagnant nutrient solution, containing 0.1% agar, to mimic the lack of convection in waterlogged soil. Net K+ and P uptakes by seminal and nodal roots were measured separately using a split root system. For seminal roots in stagnant solution, net uptakes as a percentage of aerated roots were between 0% and 16% for P, while K+ ranged between 15% uptake and 54% loss. For the more waterlogging-tolerant nodal roots, net uptakes in stagnant nutrient solution, as a percentage of aerated roots, were 31-73% for P and 69-115% for K+. Elongation rates of nodal roots in stagnant nutrient were about 35-43% of those for roots in aerated solution. This partial inhibition occurred in these nodal roots despite their 15% porosity (v/v). Elevation of O2 partial pressures around the shoots to 40 kPa and then to 80 kPa substantially accelerated nodal root elongation in stagnant solution, demonstrating that most of the inhibition seen with ambient O2 around the shoots was associated with a restricted O2 supply to these nodal roots. Thus, in wheat nodal roots, with a partial pressure of 20 kPa O2 around the shoots, O2 diffusion from the shoots did not completely relieve the restrictions on elongation resulting from stagnancy in the nutrient solution. These results contrast with those in the literature for rice, in which roots function efficiently in stagnant solutions (0.1% agar). So, when wheat roots are aerenchymatous there are still restrictions to O2 diffusion in the gas space continuum between the atmosphere and the functional tissues of the roots. This poor acclimation must have been due to inefficiency of the aerenchymatous axes, which may include persistence of anoxic steles, and/or restricted O2 diffusion in other parts of the gas space continuum, in either the shoots and shoot-root junction or in the root tip.  相似文献   

7.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

8.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

9.
The vertical elongation of normal roots of Lupinus seedlings proceeds at constant rate over periods of 4 to 5 hours. The decapitation of a root stops its elongation for a variable length of time, followed by a period of renewed elongation at a rate lower than that of the normal root. The tipping of the decapitated root with a tip of a coleoptile of Zea induces a decrease in the rate of elongation of the root. The same effect can be obtained with the diffusate from tips of coleoptile of Avena and to a lesser extent with diffusate of root tips. The reduction in the rate of elongation of the root determined by diffusate from the lower half of the tip of a coleoptile placed horizontally is more pronounced than the inhibition elicited by the diffusate of the upper half of the same tip. Various experiments with the diffusate of tips support the idea that under the conditions used the growth-promoting substance of the coleoptile tip or root tip inhibits the elongation of the decapitated root.  相似文献   

10.
Recent results showed that after 16 months in the field, micropropagated eucalyptus plants have an inferior root system to cuttings. Such differences may be due to the plant growth regulators supplied during the culture stages of standard protocols, which are targeted at optimising plantlet yields and not root quality. This study investigated such a proposal, focusing on auxins in an easy-to-root clone. Initial results showed that the auxin provided in the standard protocol (NAA for multiplication and IBA for elongation) enabled 100% rooting in auxin-free medium, where rooting was faster than on IBA-rooting media. When auxin supply was omitted from multiplication and restricted to NAA or IAA during elongation, rooting in an auxin-free medium was reduced to 68 and 31%, respectively, reflecting the stabilities of these auxins in plant tissues. Additionally, 15% of shoots from the NAA-medium and 65% from the IAA-medium produced roots with altered graviperception. GC–MS analysis of these shoots revealed a relationship between free IAA-availability and altered graviperception. This was further tested by adding the IAA-specific transport inhibitor 2,3,5-triiodobenzoic acid to rooting media with IBA, IAA or NAA, which resulted in 100, 70.9 and 20.6% rooting, respectively. At least 40% of the sampled root tips had atypical starch grain deposition and abnormal graviperception. It is proposed that, at least in this clone, while IBA and NAA can be used for in vitro root induction, IAA is necessary for development of graviresponse.  相似文献   

11.
Soil flooding results in unusually low oxygen concentrations and high ethylene concentrations in the roots of plants. This gas composition had a strongly negative effect on root elongation of two Rumex species. The effect of low oxygen concentrations was less severe when roots contained aerenchymatous tissues, such as in R. palustris Sm. R. thyrsiflorus Fingerh., which has little root porosity, was much more affected. Ethylene had an even stronger effect on root elongation than hypoxia, since very small concentrations (0.1 cm3 m?3) reduced root extension in the two species, and higher concentrations inhibited elongation more severely than did anoxia in the culture medium. Thus, ethylene contributes strongly to the negative effects of flooding on root growth. An exception may be the highly aerenchymatous, adventitious roots of R. palustris. Aerenchyma in these roots provides a low-resistance diffusion pathway for both endogenously produced ethylene and shoot-derived oxygen. This paper shows that extension by roots of R. palustris in flooded soil depends almost completely on this shoot-derived oxygen, and that aerenchyma prevents accumulation of growth-inhibiting levels of ethylene in the root.  相似文献   

12.
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology.Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions.Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme.Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ.  相似文献   

13.
Oxygen shortage in soils can occur following a wide range of natural circumstances, affecting the plant's physiology. In this paper the performance of nodulated lucerne plants under severe hypoxia is examined and the mechanisms involved to achieve this adaptation are discussed. Nodulated lucerne plants ( Medicago sativa L.) were grown with their rooting medium exposed to 1 or 21 kPa oxygen. Final yield, as expressed on a shoot dry weight basis, was unaffected but root and nodule dry weights were reduced by 50%. Water content in roots and nodules was higher at 1 kPa as a result of the formation of aerenchyma. Specific acetylene reduction activity was higher in hypoxic nodules as a consequence of modified nodule structure, although they were more sensitive to the presence of acetylene or nitrate. Root respiration was insensitive to changes in external oxygen supply, therefore providing adequate support for mineral uptake. Nodule respiration rates were 5 times higher in control plants when measured as CO2 evolution, whereas no differences were observed in O2 uptake. It is suggested that adaptation of nodulated lucerne to low oxygen concentrations involves changes in photosynthate allocation and nodule morphology, which provide a more efficient nitrogen fixation.  相似文献   

14.

Background and Aims

As part of a study on growth of tree roots in hostile soil, we envisaged that establishment and survival of trees on hard, dry soil may depend on their ability to exert axial root growth pressures of similar magnitude to those of the roots of agricultural plants (with significant root thickening when roots grow across an air gap or cracks and biopores). We selected tree species originating from a range of different soil and climatic conditions to evaluate whether their relative success on harsh soil (in an evolutionary sense) might be related to the magnitude of root growth pressures they could exert, or how they performed in the very early stages of growth after germination.

Methods

We measured the maximum axial root growth force (Fmax) on single lateral root axes of 3- to 4- month old seedlings of 6 small-seeded eucalypts from 2 different habitats and 2 contrasting soil types. Root growth rate, root diameter and Fmax were also measured on the primary root axes of a large-seeded acacia and a domesticated annual (Pisum sativum) seedling for up to 10 days following germination.

Results

The lateral roots of the 6 eucalypts and the primary roots of the acacia were considerably smaller than the primary roots of P. sativum and they exerted average forces of similar magnitude to one another (0.198 to 0.312 N). The maximum axial root growth pressures were all in the range 150 to 250 kPa but E. leucoxylon, E. loxophleba and A. salicina exerted the greatest pressures among the trees, and comparable pressures to those exerted by the primary roots of 2-day-old P. sativum (211-252 kPa). Although the primary roots of acacia seedlings exerted increasing axial root growth pressures over a 10-day period following germination, the pressures were still only slightly greater than those of the domesticated plant, P. sativum.

Conclusions

The lack of any very large differences in axial root growth pressures between trees and domesticated plants suggests that trees that grow well in harsh soil don’t do so by exerting higher root growth pressures alone but by also exploring the network of cracks and pores more effectively than do other plants that are less successful.  相似文献   

15.
Experiments on plants are often carried out in growth chambers or greenhouses which necessitate the use of an artificial rooting environment, though this is seldom characterized in detail. Measurements were made to compare the rooting environment in large boxes (0.25 m3) with that in small pots (0.19, 0.55 and 1.90 dm3) in naturally lit chambers. Diurnal temperature fluctuations of 14.6, 11.6 and 7.7°C occurred in the post compared with only 1.9°C in the boxes. Soil drying to a matric potential of-50 kPa was approximately 25 times faster in the pots. The mean heights of 2 year old Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings grown throughout their second growing season in the three sizes of pots were 38, 62 and 92% of the mean height of those grown in the boxes. Soil solution nutrient concentrations in the boxes were considerably increased by soil drying, an aspect which seems to have received little attention in experiments involving artificially imposed drought. An alternative system of constraining the roots of individual plants within nylon fabric bags, embedded in larger volumes of soil, to facilitate harvesting of complete root systems is described. The importance of the rooting environment in determining the outcome of physiological experiments is also briefly discussed.  相似文献   

16.
Root Formation in Ethylene-Insensitive Plants   总被引:2,自引:0,他引:2       下载免费PDF全文
Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.  相似文献   

17.
The presence of a rooting promoter in paratially purified extracts of avocado (Persea amricana Mill.) organs has been demonstrated using the mung bean rooting bioassay. Extraction with 80% methanol was followed by partition into diethyl ether, paper chromatography (PC) and 3 steps of thin layer chromatography (TLC). The number of roots induced by the rooting promoter in the absence of exogenous auxin was 5 to 7 times higher than that of the water control and 50% higher than by 4-(indol-3-yl) butyric acid (IBA) at its reported optimum concentration. Rooting of tomato, Coleus and young avocado cuttings was also enhanced by the rooting promoter. The rooting promoter was inhibitory in the wheat coleoptile section elongation bioassay for auxins and had slight inhibitory activity in the split pea stem curvature test.The biological properties of the avocado rooting promoter may be comparable to those of -(p-chlorophenoxy) isobutyric acid (PCIB) which acts as an anti-auxin in certain bioassays and, nevertheless, promotes the rooting of mung bean cuttings.  相似文献   

18.
Colchicine and a variety of dinitroaniline herbicides (DNHs)produce a similar pattern of inhibition of elongation, inductionof swelling in the elongation zone, depolarization of cell enlargement,and induction of multiple nuclei in corn seedling roots. However,a 1000-fold higher concentration of colchicine is needed toproduce effects quantitatively similar to those of oryzalin.Both colchicine- and DNH-inhibition of elongation start at about3 hr. Since these compounds cause swelling and inhibition ofelongation in -seedling roots, segments from the root elongationzone and intact roots in the presence of cell division inhibitors(all growing without cell division), it appears that the inhibitionof root elongation is caused in part by their effect on cellelongation independent of their effect on cell division. Sincethe growth (increase in fresh weight) of -seedling roots andexcised root segments is not inhibited by these compounds, theireffect on the polarity of cell enlargement must be fairly specific.Unlike colchicine, oryzalin applied to the roots did not causeany significant, visible effect on shoot (mesocotyl and coleoptile)growth. These organs are not resistant to oryzalin, for theIAA-induced elongation of coleoptile segments is inhibited whenthey are floated in oryzalin solutions. As expected, when coleoptilesegments are incubated in 14C-oryzalin, it is taken up rapidlyand not degraded. The failure of root-applied oryzalin to affectseedling shoot growth is due to lack of transport to the shoots. (Received June 14, 1977; )  相似文献   

19.
The spatial distribution of lateral roots in the soil is an important factor influencing water and nutrient absorption. However, lateral root development has rarely been studied in detail, especially concerning morphological variations, mainly because such examinations are both time-consuming and laborious. We measured the number and length of all first-order lateral roots on the seminal roots of maize ( Zea mays L.) and wheat ( Triticum aestivum L.) to investigate variations in linear frequency and length. This was conducted with reference to species, root types, and positions on their parental roots. Although the linear frequency of first-order lateral roots varied along the root axis in maize, the variation was not as great as in wheat. Variations were found in the length of lateral roots among plant species, root types, and positions on their parental root axes. Such variations in the length of lateral roots along the root axes were caused by differences in the elongation period of lateral roots rather than those in the elongation rate. Additionally, we examined the effects of soil drying on lateral root development. As a response to soil drying, the length of lateral roots varied depending on the period they were placed under the stressed condition. Moderate soil drying could also accelerate the elongation of some lateral roots. Variations in the length of first-order lateral roots and their responses to soil drying could help distribute their tips thoroughly throughout the soil. This might be adaptive for water absorption for root system development when resources are limited.  相似文献   

20.
Summary This paper reports the results of two series of experiments. In the first the effects of DIHB on the rate of root elongation were compared on unstressed roots and on roots stressed by mechanical impedance and by inadequate levels of aeration. Barley plants were grown in beds of small glass spheres through which nutrient solution was circulated. Mechanical impedance of 25 kPa was applied by subjecting the beds to a confining pressure. Inadequate aeration was obtained by reducing the oxygen concentration in the nutrient solution to 5%. The second series examined possible effects of DIHB on the elastic modulus of root tips of wheat and pea. Elastic modulus gives an indication of the behaviour of roots in structured soil where penetration of peds can be limited by the buckling of root tips. The elastic modulus was measured in experiments of the static cantilever type on roots previously immersed in solutions of polyethylene glycol of different osmotic potential. Elastic modulus measurements can also detect any changes in turgor pressure and wilting characteristics of roots and can therefore help to identify the mechanisms of action of DIHB. DIHB caused increases in root elongation relative to controls in all cases: 26±5.7% in unstressed roots, 14±6.4% in mechanically impeded roots and 54±9.8% in roots growing in 5% oxygen. DIHB had no effect on the elastic modulus, osmotic or turgor pressure of the roots. It is concluded that DIHB acts by modifying the cell wall extensibility factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号