首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Structural analogs of recombinant human insulin-like growth factor-I (IGF-I), with alterations to each of the B, C, A, and D domains, have been tested for their ability to form binary complexes with IGF-binding protein-3 (IGFBP-3) and ternary complexes with IGFBP-3 and the acid-labile subunit (alpha-subunit). Two functionally distinct regions of IGF-I have been identified. The first, involving residues 3 and 4 and the alpha-helix between residues 8 and 18 of the B-domain, as well as residues 49-51 in the A-domain, appears important for IGFBP-3 binding, such that substitution of these residues results in decreased binary complex available for alpha-subunit binding. The second region, distal to the IGFBP-3-binding epitope and primarily involving the D-domain and B-domain near residue 24, with some involvement of the C-domain, appears slightly inhibitory to binary complex formation, such that analogs with a truncated D-domain or with a Gly4 bridge substituted for the C-domain show enhanced binding to IGFBP-3. However, binary complexes formed from these analogs bind the alpha-subunit with reduced affinity, the effect being most marked when substitution of the C-domain, or replacement of Tyr24, is superimposed on D-domain truncation. It is concluded that although the alpha-subunit does not itself bind IGF-I, its interaction with IGFBP-3 in the ternary complex is dependent on structural determinants on IGF-I distal to the IGFBP-3 binding domain.  相似文献   

2.
BACKGROUND/AIM: In healthy adults, serum insulin-like growth factor I (IGF), IGF-binding protein 3 (IGFBP-3), and acid-labile subunit (ALS) form a 150-kD ternary complex under the control of growth hormone (GH). Circulating IGF-I half-life, bioavailability, and endocrine actions depend on the ternary complex formation. Despite GH hypersecretion, serum IGF-I, IGFBP-3, and ALS levels have all been reported to be low in patients with anorexia nervosa (AN), while the degree of ternary complex formation in AN is unknown. METHODS: Serum ALS and 150-kD ternary complex formation were measured in 6 women with AN at the time of diagnosis and after partial weight recovery and in 6 healthy age-matched women serving as controls. RESULTS: Patients with AN had low levels of ALS and IGFBP-3 contained in the 150-kD ternary complex and in the non-150-kD fraction. Following partial weight recovery, the 150-kD IGFBP-3 ternary complex was fully normalized, despite only partial normalization of serum GH and IGF-I levels. Patients with AN did not present with IGFBP-3 proteolysis different from controls. CONCLUSION: The present data indicate a pivotal role of the nutritional status in the regulation of each of the three components of the 150-kDa ternary IGFBP-3 complex and in the formation of the complex itself.  相似文献   

3.
BACKGROUND/AIMS: To investigate changes in free insulin-like growth factor I (IGF-I) and IGF-binding protein 1 (IGFBP-1) complexed IGF-I during human pregnancy. METHODS: Overnight fasting serum was obtained in a longitudinal design from 11 women with non-complicated pregnancy at gestation weeks 6-10, 16-20, 24-28 and 35-38 and, for comparison, 5 weeks post-partum. All samples were analyzed for total and free IGF-I and IGF-II, IGFBP-3 and IGFBP-3 proteolysis, total and non-phosphorylated (np-) IGFBP-1, and IGFBP-1 complexed IGF-I. RESULTS: Total IGF-I was increased in late pregnancy (week 35-38) (p < 0.001), whereas free IGF-I was significantly increased by 77% already at week 6-10 (p = 0.004) and by 140% (p = 0.002) at week 34-38, when compared to post-partum levels. At weeks 16-20 and 24-28, levels of free IGF-I were not significantly different from post-partum levels. Significant IGFBP-3 proteolysis was detectable from week 6-10 and throughout pregnancy (p < 0.05). Total and np-IGFBP-1 were significantly increased from 16-20 weeks of pregnancy (both p < 0.05) and IGFBP-1 complexed IGF-I was increased 2-fold from week 16-20 and throughout pregnancy (p < 0.05). However, the saturation of IGFBP-1 remained constant at 27-29% during the study. CONCLUSION: We found evidence of increased free IGF-I and increased IGF-I in binary complexes during pregnancy, possibly caused by IGFBP-3 proteolysis and decreased ternary complex formation.  相似文献   

4.
Insulin-like growth factor (IGF) I and IGF binding proteins (IGFBPs) modulate metabolic activity and tissue repair and are influenced by nutritional status. IGF-I circulates in free, ternary [IGF-I + IGFBP-3 + acid labile subunit (ALS)], and binary (IGF-I + IGFBP) molecular complexes, and the relative proportions regulate IGF-I extravascular shifting and bioavailability. This study examined the hypothesis that sustained physical activity and sleep deprivation superimposed on a short-term energy deficit would alter the IGFBP concentrations and alter the proportions of IGF-I circulating in ternary vs. binary molecular complexes. Components of the IGF-I system (total and free IGF-I; IGFBP-1, -3, and ALS; nonternary IGF-I and IGFBP-3), biomarkers of metabolic and nutritional status (transferrin, ferritin, prealbumin, glucose, free fatty acids, glycerol, beta-hydroxybutyrate), and body composition were measured in 12 men (22 +/- 3 yr, 87 +/- 8 kg, 183 +/- 7 cm, 20 +/- 5% body fat) on days 1, 3, and 4 during a control and experimental (Exp) period. During Exp, subjects performed prolonged work (energy expenditure of approximately 4500 kcal/day) with caloric (1600 kcal/day) and sleep (6.2 h total) restriction. IGF-I and IGFBP-3 were measured by immunoassay before and after immunoaffinity depletion of ALS-based complexes (i.e., ternary complex removal). Exp produced losses in body mass (-3.0%), lowered total IGF-I (-24%), free IGF-I (-42%), IGFBP-3 (-6%), nonternary IGF-I (-27%), and IGFBP-3 (-16%), and increased IGFBP-1 (256%). No Exp effects were observed for ALS. No changes were observed in the proportion of IGF-I circulating in free ( approximately 1.2%), ternary ( approximately 87.4%), or nonternary ( approximately 11.4%) molecular complexes. During Exp, glucose concentrations were lower on day 3, but days 1 and 4 were statistically similar. In conclusion, during a short-term energy deficit in young, healthy men, 1). IGF-I system components differentially respond (both in direction and magnitude) to a given metabolic perturbation and 2). the relative proportion of IGF-I sequestered in ternary vs. nonternary molecular complexes appears to be well maintained.  相似文献   

5.
Over 75% of the circulating insulin-like growth factors (IGF-I and -II) are bound in 140-kDa ternary complexes with IGF-binding protein-3 (IGFBP-3) and the 84-86-kDa acid-labile subunit (ALS), a glycoprotein containing 20 kDa of carbohydrate. The ternary complexes regulate IGF availability to the tissues. Since interactions of glycoproteins can be influenced by their glycan moieties, this study aimed to determine the role of ALS glycosylation in ternary complex formation. Complete deglycosylation abolished the ability of ALS to associate with IGFBP-3. To examine this further, seven recombinant ALS mutants each lacking one of the seven glycan attachment sites were expressed in CHO cells. All the mutants bound IGFBP-3, demonstrating that this interaction is not dependent on any single glycan chain. Enzymatic desialylation of ALS caused a shift in isoelectric point from 4.5 toward 7, demonstrating a substantial contribution of anionic charge by sialic acid. Ionic interactions are known to be involved in the association between ALS and IGFBP-3. Desialylation reduced the affinity of ALS for IGFBP-3. IGF complexes by 50-80%. Since serum protein glycosylation is often modified in disease states, the dependence of IGF ternary complex formation on the glycosylation state of ALS suggests a novel mechanism for regulation of IGF bioavailability.  相似文献   

6.
INTRODUCTION: The liver is the main source of serum insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and the concentration of these proteins might reflect liver function. METHODS: In a retrospective longitudinal study we examined serum levels of total and free IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 in 21 adult patients with end-stage liver disease before and after orthotopic liver transplantation (LTX) by sensitive and specific RIAs. In each patient, the mean value of at least three measurements before and after LTX was calculated. RESULTS: Before LTX, serum levels of total and free IGF-I, IGF-II, IGFBP-3 were low and showed a rapid and significant increase in almost all patients after successful LTX (total IGF-I: 30 +/- 7 vs. 256 +/- 30 ng/ml, p < 0.001; free IGF-I: 1.3 +/- 0.3 vs. 3.5 +/- 0.6 ng/ml, p < 0.01; IGF-II: 177 +/- 28 vs. 618 +/- 30 ng/ml, p < 0.001; IGFBP-3: 1,230 +/- 136 vs. 3,665 +/- 264 ng/ml, p < 0.001). In contrast, IGFBP-1 was found to be high immediately before LTX, and declined to normal levels after LTX (210 +/- 40 vs. 90 +/- 15 ng/ml, p < 0.01), while IGFBP-2 did not show any significant changes (1,154 +/- 296 vs. 1,303 +/- 192 ng/ ml). Positive correlations were found between IGF-I, IGF-II or IGFBP-3, and serum pseudocholinesterase (R = 0.50, 0.72 and 0.61 respectively, p < 0.001). Negative correlations were found between IGF-I, IGF-II or IGFBP-3, and prothrombin time (R = 0.50, 0.59 and 0.51 respectively, p < 0.001). CONCLUSION: Patients with severe liver disease show decreased levels of total and free IGF-I, IGF-II and IGFBP-3, and increased levels of IGFBP-1. These abnormalities are promptly normalized after successful LTX. Thus, serum levels of IGF-I, IGF-II and IGFBP-3 might be useful parameters for the assessment of liver function.  相似文献   

7.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen biosynthesis and prolidase activity in connective tissue cells. The disturbances in skin collagen metabolism (reflected by significant decrease in skin collagen content, collagen biosynthesis and prolidase activity) in fasted rats were accompanied by decrease in serum IGF-I level. Fasted rat serum was found to contain about 58% of IGF-I (101.6 +/- 15.4 ng/ml) as compared to control rat serum (175.7 +/- 19.8 ng/ml), while the skin of control and fasted rats contained similar concentrations of IGF-I (about 77 ng/g tissue). The insulin-like growth factor binding proteins (IGFBPs) of sera and tissue extracts (known to regulate IGF-I activity) were analysed by ligand blotting. In the serum of control rats one IGFBP band of about 46 kDa (corresponding to the acid-dissociated IGFBP-3) was detected. In the serum of fasted rats the 46 kDa IGFBP was not observed, however, an other IGFBP of about 30 kDa (corresponding to low molecular weight IGFBPs, e.g. IGFBP-1 or IGFBP-2) was found. The intensity of IGF-I binding to the 30 kDa IGFBP was much higher than that of IGFBP-3, found in control rat serum. Control and fasted rat skin contained similar IGFBPs, however their IGF-I binding abilities were much lower, compared to their serum counterparts. It was found that 46 kDa and 30 kDa proteins, observed in ligand blotting represent IGFBP-3 and IGFBP-1 or IGFBP-2. respectively as demonstrated by western immunoblot analysis. An increase in IGF-binding to 30 kDa IGFBP-1 and/or IGFBP-2 (known as an inhibitors of IGF-dependent functions) in the skin of fasted rats may explain the mechanism of reduced collagen biosynthesis and deposition in tissues during fasting.  相似文献   

8.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

9.
IGFBP-3 proteolysis clears IGFBP-3 from body fluids and increases IGF bioavailability. As shown here, native human IGFBP-3 was cleaved by proteases in media conditioned by hamster and insect cells. This proteolysis was less pronounced for IGFBP-3 containing a mutated heparin binding domain, and was prevented by purifying IGFBP-3 on an IGF-I affinity column in the presence of 2 M sodium chloride, suggesting that the responsible protease(s) binds the IGFBP-3 heparin binding domain. To determine if any human proteases act this way, we first studied plasma prekallikrein since it can copurify with IGFBP-3, and found: 1) [125]IGFBP-3 binds to prekallikrein immobilized either on nitrocellulose or on immunocapture plates; 2) the IGFBP-3 heparin binding domain participates in forming the IGFBP-3/prekallikrein complex; 3) the binary IGFBP-3/prekallikrein complex can bind IGF-I to form a ternary complex; and 4) activation of prekallikrein to alpha-kallikrein by Factor XIIa resulted in proteolysis of bound IGFBP-3. This work suggests: 1) cleavage of IGFBP-3 by a protease may be aided by the ability of the protease zymogen to directly bind the IGFBP-3 heparin binding domain; and 2) direct binding of protease zymogens to IGFBP-3 may explain some instances where IGFBP-3 is preferentially proteolyzed in the presence of other IGFBPs.  相似文献   

10.
The aim of the present study was to evaluate the mediating role played by obesity on the relationship of free insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) with muscle strength and physical performance. Data were from baseline evaluation of the ilSIRENTE Study. Muscle strength was measured by hand grip strength. Physical performance was assessed using the walking speed and the 0-3 Short Physical Performance Battery (SPPB) score. Based on its median value, free IGF-I was categorized in the following two groups: low IGF-I (IGF-I <0.65 ng/ml; n = 174) and high IGF-I (IGF-I > or =0.65 ng/ml; n = 175). Similarly, IGFBP-3 was categorized in the following two groups: low IGFBP-3 (IGFBP-3 <4,319.9 ng/ml; n = 174) and high IGFBP-3 (IGFBP-3 > or =4,319.9 ng/ml; n = 175). Body mass index (BMI) was categorized as follows: <25 kg/m(2) (n = 160), 25-29.9 kg/m(2) (n = 133), > or =30 kg/m(2) (n = 56). Mean age of the 349 participants was 85.8 yr, and 234 (67%) were women. After adjusting for potential confounders, no significant association of IGF-I and IGFBP-3 with study outcomes was observed. After the study sample was stratified by BMI groups, compared with participants with low IGF-I level, those with high IGF-I level had a significantly better grip strength [35.2 +/- 1.6 vs. 29.2 +/- 2.0 (SE) kg, P = 0.03], walking speed (0.55 +/- 0.04 vs. 0.40 +/- 0.04 m/s, P = 0.01), and SPPB score (1.9 +/- 0.1 vs. 1.5 +/- 0.1 m/s, P = 0.01) but only in the group with BMI > or =30 kg/m(2) and not in other BMI groups. A statistically significant interaction between BMI and IGF-I level was observed on all study outcomes. By contrast, no association was observed between IGFBP-3 and study outcomes, independently of BMI. In conclusion, high IGF-I level is associated with better physical function in older persons with obesity, but not in nonobese subjects.  相似文献   

11.
OBJECTIVE: To investigate the role of the insulin-like growth factors (IGF) system during the differentiation of human pulp-derived fibroblasts (HPF). METHODS: Primary HPF were cultured for 24 days in DMEM medium with IGF-I or IGF-II (50 ng/ml each). Cell growth and morphology, alkaline phosphatase (ALP) activity, the concentration of free deoxypyridinoline (DPD), IGF-I, -II, IGFBP-2 and -3 were studied. The number of (125)I-IGF-I binding sites was estimated by Scatchard analysis. RESULTS: Light-microscopically visible nodules emerged during differentiation. Simultaneously, the ALP activity increased steadily between days 8 and 24, while the DPD concentration decreased by about 50%. The HPF produced high concentrations of IGF-II (2.00-1.30 microg/10(6) cells) but low IGF-I, IGFBP-2. IGFBP-2 was not changed, IGFBP-3 increased by 65% during differentiation. The number of IGF binding sites increased from 8,500 +/- 55 per cell (day 8) up to 22,000 +/- 570 (day 24). CONCLUSION: The increasing number of IGF-binding sites accompanied by alterations in the biochemical bone markers during the differentiation of HPF suggests an autocrine/paracrine role for the IGFs in the formation of dentinal hard tissue.  相似文献   

12.
The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.  相似文献   

13.
Previous studies revealed altered levels of the circulating insulin-like growth factor-I (IGF-I) and of its binding protein-3 (IGFBP-3) in subjects with coronary atherosclerosis, metabolic syndrome and premature atherosclerosis. Hyperlipidemia is a powerful risk factor of atherosclerosis. We expected IGF-I and IGFBP-3 alterations in subjects with moderate/severe hyperlipidemia but without any clinical manifestation of atherosclerosis. Total IGF-I and IGFBP-3 were assessed in 56 patients with mixed hyperlipidemia (MHL; cholesterol >6.0 mmol/l, triglycerides >2.0 mmol/l), in 33 patients with isolated hypercholesterolemia (IHC; cholesterol >6.0 mmol/l, triglycerides <2.0 mmol/l), and in 29 healthy controls (cholesterol<6.0 mmol/l, triglycerides<2.0 mmol/l). The molar ratio of IGF-I/IGFBP-3 was used as a measure of free IGF-I. IHC subjects differed from controls by lower total IGF-I (164+/-60 vs. 209+/-73 ng/ml, p=0.01) and IGF-I /IGFBP-3 ratio (0.14+/-0.05 vs. 0.17+/-0.04, p=0.04). Compared to controls, MHL subjects had lower total IGF-I (153+/-54 ng/ml, p=0.0002) and IGFBP-3 (2.8+/-0.6 mg/ml, p<0.0001), but higher IGF-I/IGFBP-3 ratio (0.25+/-0.06, p<0.0001). Differences remained significant after the adjustment for clinical and biochemical covariates, except for triglycerides. Patients with both IHC and MHL have lower total IGF-I compared to controls. The mechanism is presumably different in IHC and MHL. Because of prominent reduction of IGFBP-3 in patients with MHL, they have reduced total IGF-I despite the actual elevation IGF-I/IGFBP-3 ratio as a surrogate of free IGF-I.  相似文献   

14.
The consequences of the combined effects of fibrin II monomer (FnIIm) and heparin (H) on the hydrolysis of peptidyl p-nitroanilide substrates by thrombin (IIa), the cleavage of prothrombin by thrombin and the thrombin-catalyzed release of fibrinopeptides from fibrinogen have been studied at pH 7.4 and I 0.15. The effects of fibrin II monomer and heparin on chromogenic substrate hydrolysis can be described by a hyperbolic mixed inhibition model in which substrate can interact with four possible enzyme species (IIa, IIa.H, IIa.FnIIm, and IIa.FnIIm.H) that arise as a result of random formation of a ternary complex among thrombin, fibrin II monomer, and heparin (Hogg, P. J. and Jackson, C. M. (1990) J. Biol. Chem. 265, 241-247). The formation of the ternary IIa.FnIIm.H complex results in an increase in the Km values of 7.03 +/- 1.17-fold (1.37-9.65 microM) and 1.94 +/- 0.60-fold (38.1-73.9 microM) for H-D-Ile-Pro-Arg-pNA and Cbz-Gly-Pro-Arg-pNA hydrolysis, respectively, and a decrease in the kc values of 0.45 +/- 0.08-fold (49.5-22.3 s-1) and 0.52 +/- 0.05-fold (93.1-48.4 s-1). Fibrin II monomer and heparin in combination also decrease the efficiency (kc/Km) with which thrombin cleaves prothrombin to produce Fragment 1 and Prethrombin 1 by 2.3-fold from 607 +/- 30 to 264 +/- 13 M-1 s-1. In contrast to the effects of fibrin II monomer and heparin on thrombin hydrolysis of chromogenic substrates, its proteolysis of prothrombin and its inactivation by antithrombin III (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623), these components have no discernible influence on the ability of thrombin to cleave fibrinogen. These observations indicate that the substrate specificity of thrombin is altered when it is bound in a complex with fibrin II monomer and heparin and suggest that the catalytic efficiency of thrombin for its physiological substrates will be affected differentially by these interactions. Such ternary complex formation involving thrombin, fibrin II monomer, and heparin may provide a mechanism for selectively regulating thrombin action.  相似文献   

15.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

16.
Protein C inhibitor is a plasma protein whose ability to inhibit activated protein C, thrombin, and other enzymes is stimulated by heparin. These studies were undertaken to further understand how heparin binds to protein C inhibitor and how it accelerates proteinase inhibition. The region of protein C inhibitor from residues 264-283 was identified as the heparin-binding site. This differs from the putative heparin-binding site in the related proteins antithrombin and heparin cofactor. The glycosaminoglycan specificity of protein C inhibitor was relatively broad, including heparin and heparan sulfate, but not dermatan sulfate. Non-sulfated and non-carboxylated polyanions also enhanced proteinase inhibition by protein C inhibitor. Heparin accelerated inhibition of alpha-thrombin, gamma T-thrombin, activated protein C, factor Xa, urokinase, and chymotrypsin, but not plasma kallikrein. The ability of glycosaminoglycans to accelerate proteinase inhibition appeared to depend on the formation of a ternary complex of inhibitor, proteinase, and glycosaminoglycan. The optimum heparin concentration for maximal rate stimulation varied from 10 to 100 micrograms/ml and was related to the apparent affinity of the proteinase for heparin. There was no obvious relationship between heparin affinity and maximum inhibition rate or degree of rate enhancement. The affinity of the resultant protein C inhibitor-proteinase complex was also not related to inhibition rate enhancement, and the results showed that decreased heparin affinity of the complex is not an important part of the catalytic mechanism of heparin. The importance of protein C inhibitor as a regulator of the protein C system may depend on the relatively large increase in heparin-enhanced inhibition rate for activated protein C compared to other proteinases.  相似文献   

17.
Chronic alcohol consumption decreases the concentration of the anabolic hormone IGF-I, and this change is associated with impaired muscle protein synthesis. The present study evaluated the ability of IGF-I complexed with IGF-binding protein (IGFBP)-3 to modulate the alcohol-induced inhibition of muscle protein synthesis in gastrocnemius. After 16 wk on an alcohol-containing diet, either the IGF-I/IGFBP-3 binary complex (BC) or saline was injected two times daily for three consecutive days. After the final injection of BC (3 h), plasma IGF-I concentrations were elevated in alcohol-fed rats to values not different from those of similarly treated control animals. Alcohol feeding decreased the basal rate of muscle protein synthesis by limiting translational efficiency. BC treatment of alcohol-fed rats increased protein synthesis back to basal control values, but the rate remained lower than that of BC-injected control rats. The BC partially reversed the alcohol-induced decrease in the binding of eukaryotic initiation factor (eIF)4E with eIF4G. This change was associated with reversal of the alcohol-induced dephosphorylation of eIF4G but was independent of changes in the phosphorylation of either 4E-BP1 or eIF4E. However, BC reversed the alcohol-induced increase in IGFBP-1 and muscle myostatin, known negative regulators of IGF-I action and muscle mass. Hence, exogenous IGF-I, administered as part of a BC to increase its circulating half-life, can in part reverse the decreased protein synthesis observed in muscle from chronic alcohol-fed rats by stimulating selected components of translation initiation. The data support the role of IGF-I as a mediator of chronic alcohol myopathy in rats.  相似文献   

18.
In the circulation, most of IGFs are bound to a high molecular mass complex of 150 kDa that consists of IGF-I (or IGF-II), IGFBP-3 and the acid-labile subunit (ALS). Within rat liver, biosynthesis of these components has been localized to different cell populations with hepatocytes as source of ALS and nonparenchymal cells (endothelial and Kupffer cells (KC)) as source of IGFBP-3. In the present study, the regulatory effects of the cAMP analogs dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP (8-br-cAMP) on IGF-I, ALS, and IGFBP expression were evaluated in primary cultures of rat hepatocytes, KC as well as in cocultures of hepatocytes and KC. In cocultures, biosynthesis of IGFBP-3 and ALS was inhibited dose-dependently by db-cAMP and 8-br-cAMP while that of IGF-I, IGFBP-1, and -4 was stimulated as demonstrated by ligand and Northern blotting. IGFBP-3 expression in primary cultures of pure KC did not respond to cAMP treatment indicating the importance of a cellular interaction between KC and hepatocytes for the decreased IGFBP-3 synthesis. The inhibition of IGFBP-3 in db-cAMP-treated cocultures was due to a decrease of IGFBP-3 mRNA level accompanied by a reduced cellular degradation of IGFBP-3. We conclude that cAMP stimulate the biosynthesis of IGF-I, IGFBP-1, and -4 in cocultures of hepatocytes and KC thereby enabling the formation of binary IGF/IGFBP complexes while the formation of the 150 kDa complex is impaired through downregulation of IGFBP-3 and ALS. This complex regulation may be a prerequisite for the effects of cAMP-dependent hormones on the transfer of IGFs from circulation to peripheral tissues.  相似文献   

19.
Following tissue injury, a fibrin network formed at the wound site serves as a scaffold supporting the early migration of stromal cells needed for wound healing. Growth factors such as insulin-like growth factor-I (IGF-I) concentrate in wounds to stimulate stromal cell function and proliferation. The ability of IGF-binding proteins (IGFBPs) such as IGFBP-3 to reduce the rate of IGF-I clearance from wounds suggests that IGFBP-3 might bind directly to fibrinogen/fibrin. Studies presented here show that IGFBP-3 does indeed bind to fibrinogen and fibrin immobilized on immunocapture plates, with K(d) values = 0.67 and 0.70 nM, respectively, and competitive binding studies suggest that the IGFBP-3 heparin binding domain may participate in this binding. IGF-I does not compete for IGFBP-3 binding; instead, IGF-I binds immobilized IGFBP-3.fibrinogen and IGFBP-3.fibrin complexes with affinity similar to that of IGF-I for the type I IGF receptor. In the presence of plasminogen, most IGFBP-3 binds directly to fibrinogen, although 35-40% of the IGFBP-3 binds to fibrinogen-bound plasminogen. IGFBP-3 also binds specifically to native fibrin clots, and addition of exogenous IGFBP-3 increases IGF-I binding. These studies suggest that IGF-I can concentrate at wound sites by binding to fibrin-immobilized IGFBP-3, and that the lower IGF affinity of fibrin-bound IGFBP-3 allows IGF-I release to type I IGF receptors of stromal cells migrating into the fibrin clot.  相似文献   

20.
The binding of human alpha-thrombin (IIa) to fibrin polymer (FnIIp) was studied in the presence and absence of a high affinity 20,300 Mr heparin (H) at pH 7.4, I 0.15, and 23 degrees C. In the absence of heparin, thrombin interacts with a high affinity class of binding sites on fibrin polymer with a dissociation constant of 301 +/- 36 nM in a manner which is independent of the enzyme active site. Studies of thrombin binding as a function of heparin and fibrin polymer concentrations imply that a ternary thrombin-fibrin polymer-heparin complex (IIa.FnIIp.H) is formed. Assembly of the ternary complex occurs randomly through the interactions of all three possible intermediate binary complexes; IIa.H, IIa.FnIIp, and FnIIp.H. Using an independently determined value of 280 +/- 35 nM for the FnIIp.H dissociation constant, global fits of the binding data yield a dissociation constant of 15 +/- 6 nM for the IIa.H interaction and 47 +/- 9 nM for the IIa.H intermediate binary complex interaction with FnIIp. These studies indicate that heparin enhances the binding of thrombin to fibrin polymer 6.4-fold with an overall dissociation constant for ternary complex formation of 705 nM2. The effect of heparin molecular weight on ternary complex formation has also been investigated. Heparins of molecular weights 11,200-20,300 behave similarly with respect to their influence on ternary complex formation, whereas heparins of lower molecular weight are less effective in promoting thrombin binding to fibrin polymer. This effect of heparin is also independent of whether it has high or low affinity for antithrombin III. The demonstration of the formation of a ternary IIa.FnIIp.H complex complements kinetic evidence indicating the formation of an analogous ternary complex with fibrin II monomer (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623). The possible implications of these findings for the in vivo distribution and actions of thrombin and the clinical efficacy of heparin are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号