首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative expression of a number of key mediators of human pigmentation including tyrosinase, tyrosinase related protein-1 (TYRP1), endothelin-1 and adrenocorticotrophic hormone (ACTH) proteins were analysed and quantified in immunohistochemically stained skin sections using semiquantitative computer assisted image analysis. Comparisons were made between a range of different ethnic skin types including European, Chinese, Mexican, Indian and African at both chronically photoexposed and photoprotected sites. Melanocyte number varied little with ethnicity except in the European group which had 60-80% more melanocytes than other skin types (P < 0.01, n = 10; Student Neuman-Keuls). However, melanocyte number was increased approximately twofold in chronically photoexposed skin of all ethnic groups (P < 0.001, n = 48; paired t-test). Tyrosinase protein expression in melanocytes did not vary with ethnicity, but TYRP1 protein was significantly elevated (approximately 2.6-fold) in darkly pigmented African and Indian skin types compared with lightly pigmented Mexican, Chinese and European skin types. In melanocytes from chronically photoexposed skin, there was a modest but significant increase in the expression of tyrosinase protein (approximately 1.2-fold, P < 0.001, n = 48; paired t-test), together with a significant and slightly larger increase in the expression of TYRP1 protein (approximately 1.6-fold, P < 0.005, n = 48; paired t-test). In contrast, the expression of endothelin-1 and ACTH showed no significant variation with either ethnicity or photoexposure. These data are consistent with the view that maintenance of a chronically hyperpigmented phenotype in chronically photoexposed human skin is largely the result of a stable increase in the number of tyrosinase positive melanocytes at these sites. Moreover, the observed ethnic variation in TYRP1 protein expression suggests that TYRP1 may play a significant role in mediating ethnic differences in melanogenesis and constitutive skin pigmentation in vivo.  相似文献   

2.
A combination of techniques, including high-performance liquid chromatography (HPLC), spectrophotometric measurements, and a novel method for quantifying melanosome morphology, were applied to the analysis of melanin content and composition in highly pigmented (Fitzpatrick type V and VI) human skin. We found that total epidermal melanin content is significantly elevated in photoexposed type V and VI skin (approximately 1.6 x), while analysis of individual melanin components suggests that pheomelanin content increases only slightly, whereas 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-eumelanin and to a greater extent 5,6-dihydroxyindole (DHI)-eumelanin content are both markedly elevated. Analysis of the relative composition of epidermal melanin in these subjects revealed that DHI-eumelanin is the largest single component (approximately 60-70%), followed by DHICA-eumelanin (25-35%), with pheomelanin being a relatively minor component (2-8%). Moreover, there was a comparative enrichment of DHI-eumelanin at photoexposed sites, with a corresponding decline in the relative contributions from DHICA-eumelanin and pheomelanin. There was also a good correlation and close agreement between the concentration of spheroidal melanosomes determined by morphological image analysis and the concentration of pheomelanin determined by a combination of HPLC and spectrophotometric analysis (r = 0.89, P < 0.02). This study demonstrates the usefulness of melanosome morphology analysis as a sensitive new method for the quantification of melanin composition in human skin. The data also suggest that DHI-eumelanin formation is the dominant pathway for melanin synthesis in heavily pigmented (Fitzpatrick V and VI) skin types in vivo, and is the favoured pathway when melanin production is increased in chronically photoexposed skin.  相似文献   

3.
Role of light in human skin color viariation.   总被引:1,自引:0,他引:1  
The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.  相似文献   

4.
Melanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC). Together with in-gel digestion, this method has allowed us to characterize melanosome proteomes at various developmental stages by tandem mass spectrometry. Comparative profiling and functional characterization of the melanosome proteomes identified approximately 1500 proteins in melanosomes of all stages, with approximately 600 in any given stage. These proteins include 16 homologous to mouse coat color genes and many associated with human pigmentary diseases. Approximately 100 proteins shared by melanosomes from pigmented and nonpigmented melanocytes define the essential melanosome proteome. Proteins validated by confirming their intracellular localization include PEDF (pigment-epithelium derived factor) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). The sharing of proteins between melanosomes and other lysosome-related organelles suggests a common evolutionary origin. This work represents a model for the study of the biogenesis of lysosome-related organelles.  相似文献   

5.
Skin color results from the production and distribution of melanin in the epidermis. The protease-activated receptor-2 (PAR-2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR-2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color-dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR-2 may play a role in the modulation of pigmentation in a skin type-dependent manner. We examined the expression of PAR-2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR-2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR-2-specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR-2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin-derived keratinocytes. These results demonstrate that PAR-2 expression and activity correlate with skin color, suggesting the involvement of PAR-2 in ethnic skin color phenotypes.  相似文献   

6.
Skin color results from the production and distribution of melanin in the epidermis. The protease‐activated receptor‐2 (PAR‐2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR‐2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color‐dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR‐2 may play a role in the modulation of pigmentation in a skin type‐dependent manner. We examined the expression of PAR‐2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR‐2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR‐2‐specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR‐2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin‐derived keratinocytes. These results demonstrate that PAR‐2 expression and activity correlate with skin color, suggesting the involvement of PAR‐2 in ethnic skin color phenotypes.  相似文献   

7.
8.
9.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

10.
The epidermal–melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte–melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation (‘injection’), keratinocyte–melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease‐activated receptor‐2 (PAR‐2) support the phagocytosis theory. PAR‐2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR‐2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte–melanocyte contact. Moreover, PAR‐2 is induced by UV irradiation and inhibition of PAR‐2 activation results in the prevention of UVB‐induced tanning. The role of PAR‐2 in mediating UV‐induced responses remains to be elucidated.  相似文献   

11.
《Cellular signalling》2014,26(4):716-723
Transfer of melanin-containing melanosomes from melanocytes to neighboring keratinocytes results in skin pigmentation. Pharmacological modulation of melanosomal transfer has recently gained much attention as a strategy for modifying normal or abnormal pigmentation. In this study, while investigating the impact of pyridinyl imidazole (PI) compounds, a class of p38 MAPK inhibitors, on melanocyte differentiation we observed that some, but not all PIs interfere with the physiological melanosome sorting producing a strong retention of melanin in the intracellular compartment associated with a general reduction of melanin synthesis. Electron microscopy studies illustrated an accumulation of melanosomes inside melanocytes with enrichment in immature melanosome at stages II and III at the end of dendrites. We identified cyclin G-associated kinase GAK, a protein expressed ubiquitously in various tissues, as the off-target responsible of intracellular melanin accumulation and we report evidence that reduced GAK-dependent cathepsin maturation is implicated in melanosome sorting deficiency. The co-regulation of GAK and cathepsin B and L expression with the melanogenic biosynthetic pathway in normal human melanocytes as well as in B16-F0 melanoma cells strengthen the idea that these proteins represent new possible targets for prevention and treatment of irregular pigmentation.  相似文献   

12.
Molecular motors and their role in pigmentation.   总被引:6,自引:0,他引:6  
Skin pigmentation is orchestrated through a series of complementary processes. After migration of melanoblasts out of the neural crest to epidermis and hair follicle, these cells mature into melanocytes. Differentiated melanocytes produce melanin in specialized organelles, the melanosomes. Moreover, the cytoplasm of melanocytes branches into extensions, the dendrites. Via the tips of these dendrites they donate their mature melanosomes to the keratinocytes resulting in skin pigmentation. Thus, one essential part of the process of pigmentation is the translocation of melanosomes from their site of origin in the perinuclear cytoplasm towards the dendrite tips. Motor proteins are molecules which use the energy derived from ATP hydrolysis to move along cytoskeletal elements, either actin filaments or microtubules, to transport their cargo, which can be organelles, vesicles or chromosomes. This review describes the different classes of microtubule-based and actin-based motor proteins with their characteristics and functional importance in cell biology and organelle transport. Some of them will be highlighted and several recent studies in mammalian pigment cells indicating their role in pigment granule transport will be discussed. As a result of these data and previous suggestions, a model will be proposed for the possible cooperation of both systems in melanosome movement.  相似文献   

13.
Melanocytes account for approximately 5–10% percent of the cells in adult epidermis. Unlike the ectodermally derived keratinocytes, they originate in the neural crest and migrate into the epidermis early in development. There has been an interest in melanocytes in developing human skin since the late 1800s, when concentrated pigmented cells were identified in the sacro-coccygeal skin of Japanese fetuses. This observation led to speculation and subsequent investigation about the racial nature of the melanocytes in this site (the Mongolian spot), the presence of melanocytes in fetuses of other races, the timing of appearance of these cells in both the dermis and epidermis, and their origin. The early investigators relied primarily on histochemical methods that stained either the premelanosome or the pigmented melanosome, or relied upon the activity of tyrosinase within the melanosome to effect the DOPA reaction. Studies by electron microscopy added further documentation to the presence of melanocytes in the skin by resolving the structure of the melanosome regardless of its state of pigmentation. All of these methods recognized, however, only differentiated melanocytes. The thorough investigations of melanocytes in the skin from a large number of black embryos and fetuses by Zimmerman and colleagues between 1948 and 1955 provided insight into the time of appearance of melanocytes in the dermis (10–11 weeks' menstrual age) and the epidermis (11–12 weeks) and revealed the density of these cells in both zones of the skin of several regions of the body. The precise localization of the melanocytes in the developing hair follicles was contributed by the studies of Mishima and Widlan (J Invest Dermatol 1966; 46:263–277). More recently, monoclonal antibodies have been developed that recognize common oncofetal or oncodifferentiation antigens on the surface or in the cytoplasm of melanoma cells and developing melanocytes (but not normal adult melanocytes). These antibodies recognize the cells irrespective of the presence or absence of melanosomes or their activity in the synthesis of pigment and therefore are valuable tools for re-examining the presence, density, and distribution patterns of melanocytes in developing human skin. Using one of these antibodies (HMB-45), it was found that dendritic melanocytes are present in the epidermis between 40 and 50 days estimated gestational age in a density comparable with that of newborn epidermis and are distributed in relatively non-random patterns. A number of questions about the influx of cells into the epidermis, potential reservoirs of melanoblasts retained within the dermis, division of epidermal melanocytes, and the interaction of melanocytes and keratinocytes during development remain unresolved. The tools now appear to be available, however, to begin to explore many of these questions.  相似文献   

14.
Through a process known as melanogenesis, melanocyte produces melanin in specialized organelles termed melanosomes, which regulates pigmentation of the skin, eyes, and hair. Gp96 is a constitutively expressed heat shock protein in the endoplasmic reticulum whose expression is further upregulated upon ultraviolet irradiation. However, the roles and mechanisms of this chaperone in pigmentation biology are unknown. In this study, we found that knockdown of gp96 by RNA interference significantly perturbed melanin synthesis and blocked late melanosome maturation. Gp96 knockdown did not impair the expression of tyrosinase, an essential enzyme in melanin synthesis, but compromised its catalytic activity and melanosome translocation. Further, mice with melanocyte‐specific deletion of gp96 displayed decreased pigmentation. A mechanistic study revealed that the defect in melanogenesis can be rescued by activation of the canonical Wnt pathway, consistent with the critical roles of gp96 in chaperoning Wnt‐coreceptor LRP6. Thus, this work uncovered the essential role of gp96 in regulating melanogenesis.  相似文献   

15.
16.
Pathways of melanosome biogenesis in retinal pigment epithelial (RPE) cells have received less attention than those of skin melanocytes. Although the bulk of melanin synthesis in RPE cells occurs embryonically, it is not clear whether adult RPE cells continue to produce melanosomes. Here, we show that progression from pmel17-positive premelanosomes to tyrosinase-positive mature melanosomes in the RPE is largely complete before birth. Loss of functional Rab38 in the "chocolate" (cht) mouse causes dramatically reduced numbers of melanosomes in adult RPE, in contrast to the mild phenotype previously shown in skin melanocytes. Choroidal melanocytes in cht mice also have reduced melanosome numbers, but a continuing low level of melanosome biogenesis gradually overcomes the defect, unlike in the RPE. Partial compensation by Rab32 that occurs in skin melanocytes is less effective in the RPE, presumably because of the short time window for melanosome biogenesis. In cht RPE, premelanosomes form but delivery of tyrosinase is impaired. Premelanosomes that fail to deposit melanin are unstable in both cht and tyrosinase-deficient RPE. Together with the high levels of cathepsin D in immature melanosomes of the RPE, our results suggest that melanin deposition may protect the maturing melanosome from the activity of lumenal acid hydrolases.  相似文献   

17.
Alibardi, L. 2012. Cytology and localization of chromatophores in the skin of the Tuatara (Sphenodon punctaus). —Acta Zoologica (Stockholm) 93 : 330–337. The study deals with skin pigmentation in the reptile Sphenodon punctatus where neither strong colors nor rapid color changes are present. Dark areas of the skin derive from an intense pigmentation of beta‐keratinocytes of the epidermis. Only epidermal melanocytes are involved in the process of melanosome transfer into keratinocytes. The basement membrane is a structural boundary separating melanocytes from melanophores that are sparse or concentrated in some dermal areas where they contribute to the dark coloration of the skin. In these regions, dermal melanophores give rise to the dark dots or to the irregular spots or to the dark stripes present in the skin. Ultrastructurally only eu‐melanosomes are present, although only molecular studies can detect whether also pheomelanins are synthesized in these organelles. Chromatophores are not organized in functional dermal melanophore units. Xantophores are distributed under the epidermis and store lipid‐containing droplets or lamellated pterinosomes. Their specific yellow‐orange hues become evident on the skin surface. Iridophores are generally localized among the melanosomes and form reflecting platelets that are derived form the endoplasmic reticulum and probably are also elaborated in the Golgi apparatus. The role in color production of the latter cells in the skin remains to be identified.  相似文献   

18.
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll‐like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100‐positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.  相似文献   

19.
To gain insight for the role of mast cell‐produced heparin in the regulation of epidermal homeostasis and skin pigmentation, we have investigated the effect of heparin on melanosome uptake and proinflammatory responses in normal human epidermal keratinocytes (NHEKs). We quantified phagocytic activity of NHEKs with uptake of melanosomes or fluorescent microspheres. Heparin exhibited the inhibitory effect on keratinocyte phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways. In fact, the heparin‐treated NHEKs showed impaired activation of Akt and ERK during phagocytosis, whereas PI3k and MEK inhibitors significantly suppressed melanosome uptake by NHEKs. In addition, the inflammation marker cycloxygenase‐2 (COX‐2) expression and prostaglandin E2 (PGE2) production were induced during phagocytosis, while these effects were downregulated in the presence of heparin. Our observations suggest that heparin may play an antiphagocytic and anti‐inflammation role in epidermis of human skin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号