首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS: Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS: The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS: The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.  相似文献   

2.
Ethylnitrosourea (ENU), a well known DNA alkylating agent, induces anomalies in the central nervous system (CNS), craniofacial tissues and male reproductive organs, and the enhancement of apoptosis is found in these tissues immediately after the administration of ENU (Katayama et al., 2000a). In this study, pregnant rats were treated with 60mg/kg of ENU at day 13 of gestation, and kinetics of apoptotic cells, mitotic cells and bromodeoxyuridine (BrdU)-positive cells in the fetal CNS were examined from 3 to 48 hours after the treatment (HAT). From 3 HAT, a significant increase in the number of apoptotic cells and a significant decrease in the number of mitotic cells were detected in the fetal CNS, and BrdU-positive cells significantly decreased in accordance with the increase in the number of apoptotic cells. The present results strongly suggest that both excess cell death by apoptosis and cell growth arrest indicated by decreased number of mitotic cells and BrdU-positive cells may have a close relation to the later occurrence of microencephaly following ENU-administration, and that ENU affects mainly S-phase cells and causes apoptosis.  相似文献   

3.
Ethylnitrosourea (ENU), a well known DNA alkylating agent, induces anomalies in the central nervous system (CNS), craniofacial tissues and male reproductive organs. In this study, pregnant rats were treated with 60 mg/kg ENU at day 13 of gestation, and their fetuses were examined from 1 to 48 hours after treatment (HAT) to find a clue for clarifying the mechanisms of the ENU fetotoxicity and teratogenicity. From 3 to 12 HAT, the moderate to marked increase in the number of pyknotic cells was detected in the fetal CNS, craniofacial mesenchymal tissues, gonads and so on. These pyknotic cells had nuclei positively stained by the TUNEL method, which is widely used for the detection of apoptotic nuclei, and they also showed electron microscopic characteristics identical to those of apoptotic cells. The present results strongly suggest that excess cell death by apoptosis in the fetal CNS, craniofacial tissues and gonads may have a close relation to the later occurrence of anomalies reported in these tissues following ENU-administration.  相似文献   

4.
Ethylnitrosourea (ENU), a well known alkylating agent, induces congenital anomalies in fetuses when it is administered to pregnant animals. In previous studies, we reported that ENU induced apoptosis and growth arrest in fetal tissues and organs immediately after its administration to pregnant rats. In the present study, we investigated the histopathological changes of the placenta after ENU administration to pregnant rats on Day 13 of gestation (GD13) to obtain a clue for clarifying the role of the placenta in the process of fetal developmental disability induced by genotoxic stress. Apoptotic cells increased and DNA-replicating cells decreased in the trophoblastic cells in the placental labyrinth zone of the ENU-treated group by 3 h after treatment. The number of apoptotic cells peaked at 6 h after treatment and returned to control levels at 48 h after treatment. The number of DNA-replicating cells reached minimum levels at 6 h after treatment and returned to control levels at 48 h after treatment. By immunohistochemistry, p53-positive signals were observed in trophoblastic cells in the labyrinth zone of the ENU-treated group from 3 to 6 h after treatment. Significant decreases in fetal and placental weights were observed in the ENU-treated group at 2 days (GD15) and 8 days (GD21) after treatment. A reduction in the thickness of the labyrinth zone was histopathologically significant in the ENU-treated group. These results indicate that ENU induces apoptosis and growth arrest not only in fetal tissues, but also in trophoblastic cells in the rat placental labyrinth zone, and these placental changes may have roles in the induction of fetotoxicity and teratogenicity of ENU. Moreover, a possible involvement of p53 in the induction of apoptosis and growth arrest is suggested.  相似文献   

5.
The p53 tumor suppressor gene responds to cellular stress by activating either cell cycle arrest or apoptosis. A growing number of target genes involved in each of these pathways have been identified. However, the mechanism by which the apoptosis versus arrest decision is made remains to be elucidated. Perp is a proapoptotic target gene of p53 expressed to high levels in apoptotic cells compared with those undergoing cell cycle arrest. This pattern of expression is unusual among p53 target genes, many of which are induced to similar levels during arrest and apoptosis. Here, we describe the regulation of the Perp gene by p53 through at least three response elements in the Perp promoter and first intron. These sites are occupied in vivo in E1A-expressing mouse embryo fibroblasts undergoing apoptosis but not cell cycle arrest, in contrast to the p21 5' response element, which is occupied during both. The apoptosis-deficient p53 point mutant, p53V143A, displays a selective deficit in binding to the Perp elements, demonstrating that p53 can distinguish between Perp and p21 at the level of DNA binding. These results provide mechanistic insight into the selective expression of Perp during apoptosis and may provide a useful model for studying the p53-dependent cell cycle arrest versus apoptosis decision.  相似文献   

6.
7.
8.
9.
10.
Wei P  Tao SX  Zhang XS  Hu ZY  Yi-Xun L 《生理学报》2004,56(1):60-65
胎盘形成过程中发生活跃的细胞增殖、迁移和凋亡等活动。p53蛋白是参与调节细胞周期和凋亡过程的原癌基因。本实验用原位末端标记、蛋白印迹和免疫组织化学方法研究正常和米非司酮(RU486)处理后恒河猴母胎界面绒毛和蜕膜组织细胞凋亡及p53蛋白表达。在正常妊娠的恒河猴母胎界面,凋亡信号主要集中在合体滋养层和细胞柱内的一些滋养层细胞;p53蛋白主要定位于细胞滋养层。在母体蜕膜中,也在部分基质细胞中检测到细胞凋亡和p53蛋白表达。经过RU486处理2d后,胎盘绒毛和母体蜕膜中凋亡细胞数都显著增加,绒毛中增加的凋亡信号集中于细胞滋养层。同时,RU486处理也导致绒毛细胞滋养层和蜕膜基质细胞中p53表达明显增加。以上结果提示,在正常妊娠中,生理性的细胞凋亡和p53表达可能是控制细胞滋养层细胞增殖、保持胎盘组织动态平衡的一个重要机制;RU486终止早孕的可能途径之一是促进母胎界面细胞凋亡,推测p53参与这一过程。  相似文献   

11.
12.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

13.
14.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

15.
16.
The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small-molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a genome-wide short hairpin RNA screen for genes that are lethal in combination with p53 activation by Nutlin-3, which showed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors also enable Nutlin-3 to kill tumor spheroids. These results identify new pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.  相似文献   

17.
The cyclin-dependent kinase inhibitor (CKI) p57(Kip2) plays a pivotal role in cell cycle arrest during development, in particular, in the regulation of the entry of proliferating progenitors into quiescence. The gene encoding p57 undergoes genomic imprinting, and impairment of the regulation of p57 expression results in various developmental anomalies in humans and mice. We now show that p57 is expressed predominantly in the subcommissural organ and cerebellar interneurons in the mouse brain and that mice with brain-specific deletion of the p57 gene (Kip2) manifest prominent nonobstructive hydrocephalus as well as cerebellar malformation associated with the loss of Pax2-positive interneuron precursors and their descendants, including Golgi cells and γ-aminobutyric acid-containing neurons of the deep cerebellar nuclei. These abnormalities were found to be attributable to massive apoptosis of precursor cells in the developing brain. The morphological defects of the p57-deficient mice were corrected by knock-in of the gene for the related CKI p27(Kip1) at the Kip2 locus. The abnormalities were also prevented by additional genetic ablation of p53 or E2F1. Our results thus implicate p57 in cell cycle arrest in the subcommissural organ and Pax2-positive interneuron precursors, with the lack of p57 resulting in induction of p53-dependent apoptosis due to hyperactivation of E2F1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号