首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Clostridium thermocellum produced different levels of true cellulase (Avicelase) depending on the carbon source used for growth. In defined medium with fructose, the cellulase titer was seven times higher than with cells growing on cellobiose and four times higher than cells growing with glucose. During the lag phase on fructose, the differences were even more dramatic, i.e. 60 times higher than in cells growing on cellobiose and 40 times that of cells lagging or growing in glucose. In an attempt to detect factors that might contribute to these differences, we considered intracellular ATP, chemical potential (pH), electrical potential (Y), proton motive force (p), growth rate, and rates of uptake of inorganic phosphate and sugars. We noted a direct correlation between cellulase production and intracellular ATP levels and an inverse relationship of cellulase production with Y and p values. It thus appears that cellulase is best produced by cells high in ATP and low in Dp and its electrical component DY. There was no obvious relationship between the cellulase titer and the other parameters. Although the physiological significance of such correlations is unknown, the data suggest that further investigation is warranted.  相似文献   

2.
We have prepared a much simpler cellulase preparation than that of cellulosomes from the extracellular broth of Clostridium thermocellum. This "subcellulosome" preparation from C. thermocellum was obtained by column chromatography on CM-Bio-Gel A and then on a lectin-affinity material (Jacalin). The subcellulosome preparation is a macromolecular complex, composed of six main protein subunits (molecular weight, 210,000 to 58,000) revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activities of carboxymethylcellulase (CMCase) and Avicelase are 15- and 8-fold-higher, respectively, than those of crude extracellular cellulase. We could not further fractionate this preparation without denaturing it. The optimum pH and temperature of the subcellulosome preparation are 5.5 to 7.0 and 70 degrees C for CMCase and 5.5 to 7.0 and 65 degrees C for Avicelase. The subcellulosome preparation acted on various types of carboxymethyl cellulose, cellulose, and p-nitrophenyl-beta-D-cellobioside but not on p-nitrophenyl-beta-D-glucoside. Sulfhydryl reagents and N-bromosuccinimide inhibited both CMCase and Avicelase activities, whereas EDTA and o-phenanthroline inhibited Avicelase activity only.  相似文献   

3.
We have prepared a much simpler cellulase preparation than that of cellulosomes from the extracellular broth of Clostridium thermocellum. This "subcellulosome" preparation from C. thermocellum was obtained by column chromatography on CM-Bio-Gel A and then on a lectin-affinity material (Jacalin). The subcellulosome preparation is a macromolecular complex, composed of six main protein subunits (molecular weight, 210,000 to 58,000) revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activities of carboxymethylcellulase (CMCase) and Avicelase are 15- and 8-fold-higher, respectively, than those of crude extracellular cellulase. We could not further fractionate this preparation without denaturing it. The optimum pH and temperature of the subcellulosome preparation are 5.5 to 7.0 and 70 degrees C for CMCase and 5.5 to 7.0 and 65 degrees C for Avicelase. The subcellulosome preparation acted on various types of carboxymethyl cellulose, cellulose, and p-nitrophenyl-beta-D-cellobioside but not on p-nitrophenyl-beta-D-glucoside. Sulfhydryl reagents and N-bromosuccinimide inhibited both CMCase and Avicelase activities, whereas EDTA and o-phenanthroline inhibited Avicelase activity only.  相似文献   

4.
Summary Among twelve strains of Clostridium thermocellum isolated from faecal droppings of various herbivorous animals and birds, three of the strains, SS21, SS22 and SS19, produced 0.37, 0.33 and 0.32 g of ethanol per g of the substrate consumed and had ethanol to acetate ratios of 2.21, 2.45 and 1.72 respectively. These are the highest substrate conversion yields of ethanol amongst the wild strains of C. thermocellum reported so far. The optimum temperature and pH for growth and ethanol production were 60 °C and 7.5, respectively.  相似文献   

5.

Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.

  相似文献   

6.
7.
8.
Summary Two strains of the thermophilic anaerobe Clostridium thermocellum, the wild type NCIB 10682 and its ethanol-hyperproductive mutant 647, were tested for their ability to grow on natural lignocellulosic materials (poplar wood, wheat straw) which had been pretreated by either hydrothermolysis or an organosolv process. For both materials and both strains, the dependencies of substrate accessibility on the pretreatment temperature were established in terms of cellulose hydrolysis and of product formation.In addition to the non-pH-controlled shake flask assays, in vitro experiments with cell-free culture supernatant and in vivo cellulolyses under pH regulation in a laboratory fermenter indicated that lignocellulosics pretreated at approx. 230°C were degraded efficiently by the Clostridium strains investigated.  相似文献   

9.
Regulation of cell-specific cellulase synthesis (expressed in milligrams of cellulase per gram [dry weight] of cells) by Clostridium thermocellum was investigated using an enzyme-linked immunosorbent assay protocol based on antibody raised against a peptide sequence from the scaffoldin protein of the cellulosome (Zhang and Lynd, Anal. Chem. 75:219-227, 2003). The cellulase synthesis in Avicel-grown batch cultures was ninefold greater than that in cellobiose-grown batch cultures. In substrate-limited continuous cultures, however, the cellulase synthesis with Avicel-grown cultures was 1.3- to 2.4-fold greater than that in cellobiose-grown cultures, depending on the dilution rate. The differences between the cellulase yields observed during carbon-limited growth on cellulose and the cellulase yields observed during carbon-limited growth on cellobiose at the same dilution rate suggest that hydrolysis products other than cellobiose affect cellulase synthesis during growth on cellulose and/or that the presence of insoluble cellulose triggers an increase in cellulase synthesis. Continuous cellobiose-grown cultures maintained either at high dilution rates or with a high feed substrate concentration exhibited decreased cellulase synthesis; there was a large (sevenfold) decrease between 0 and 0.2 g of cellobiose per liter, and there was a much more gradual further decrease for cellobiose concentrations >0.2 g/liter. Several factors suggest that cellulase synthesis in C. thermocellum is regulated by catabolite repression. These factors include: (i) substantially higher cellulase yields observed during batch growth on Avicel than during batch growth on cellobiose, (ii) a strong negative correlation between the cellobiose concentration and the cellulase yield in continuous cultures with varied dilution rates at a constant feed substrate concentration and also with varied feed substrate concentrations at a constant dilution rate, and (iii) the presence of sequences corresponding to key elements of catabolite repression systems in the C. thermocellum genome.  相似文献   

10.
Bacillus subtilis AU-1 was found to produce carboxymethylcellulase (CMCase) and Avicelase activities in the culture supernatant when grown on a variety of carbohydrates as major carbon source. Maximum CMCase production was obtained in a liquid medium containing 0.2% D (+) raffinose as inducer, 0.5% each of yeast extract, casamino acids and proteose peptone at 50 °C and at an initial pH of 6.0. CMCase activity was detected at early log phase of growth, and reached the maximum level at early stationary phase of growth which occurred at the 10th hour of cultivation. The optimal temperature for CMCase activity was 65 °C, and the enzyme was highly stable up to 60 °C. CMCase synthesis was subjected to catabolite repression by glucose and cellobiose.  相似文献   

11.
The nucleotide sequence of the CelB gene, encoding the extracellular endoglucanase B of Clostridium thermocellum, is reported. The putative start of the 1689 bp coding sequence was assigned to an ATG codon which is preceded by an AGGAGG sequence typical of ribosomal binding sites in Gram-positive bacteria. The amino-terminal end of the deduced protein sequence is similar to signal peptides described for other bacterial secretory proteins. The carboxy-terminal ends of endoglucanases A and B appear to be remarkably homologous. A striking feature of the conserved region is that both proteins contain two reiterated stretches of 23 aminoacids each, separated by 9 residues.  相似文献   

12.
Abstract Certain isolated components of fungal cellulases, which cannot effect the breakdown of highly ordered cellulose individually, interact together synergistically to do so when recombined. Suprisingly, not all fungal cellulase components exhibit this property, and no such synergism has been observed so far between fungal and bacterial cellulases.
The cellulase complex of Clostridium thermocellum cannot effect the extensive breakdown of highly ordered cellulose unless Ca2+ and dithiothreitol (DTT) are present. However, we now report that isolated cellobiohydrolase from Trichoderma koningii can combine with C. thermocellum cellulase to effect the breakdown of cellulose in the absence of Ca2+ and DTT. enhanced activity is observed if Ca2+ and DTT are present.
This finding may have important applications in industry: it certainly has important implications for those interested in the basic mechanism of cellulase action in C. thermocellum .  相似文献   

13.
Significant quantitative differences in ethanol yields along with repression in acetic acid production were observed in Clostridium thermocellum strains SS21 and SS22 in the presence of H 2 , acetone and sodium azide. Exogenous H 2 addition (1.0 atm) increased the ethanol yields to 0.40 g/g and ethanol to acetate ratio to 5.75 in strain SS21 but was inhibitory in strain SS22. Addition of acetone reversed the inhibition caused by H 2 and increased the ethanol yields and ethanol to acetate ratio of strain SS22 up to 0.40 g/g and 7.9, respectively. Enhancement in ethanol yields up to 0.40 g/g and 0.41 g/g and ethanol to acetate ratio up to 3.63 and 8.1 were observed in the presence of 0.2 mM and 0.15 mM concentration of sodium azide by strains SS21 and SS22, respectively.  相似文献   

14.
We have investigated hydrogen (H2) production by the cellulose-degrading anaerobic bacterium, Clostridium thermocellum. In the following experiments, batch-fermentations were carried out with cellobiose at three different substrate concentrations to observe the effects of carbon-limited or carbon-excess conditions on the carbon flow, H2-production, and synthesis of other fermentation end products, such as ethanol and organic acids. Rates of cell growth were unaffected by different substrate concentrations. H2, carbon dioxide (CO2), acetate, and ethanol were the main products of fermentation. Other significant end products detected were formate and lactate. In cultures where cell growth was severely limited due to low initial substrate concentrations, hydrogen yields of 1 mol H2/mol of glucose were obtained. In the cultures where growth ceased due to carbon depletion, lactate and formate represented a small fraction of the total end products produced, which consisted mainly of H2, CO2, acetate, and ethanol throughout growth. In cultures with high initial substrate concentrations, cellobiose consumption was incomplete and cell growth was limited by factors other than carbon availability. H2-production continued even in stationary phase and H2/CO2 ratios were consistently greater than 1 with a maximum of 1.2 at the stationary phase. A maximum specific H2 production rate of 14.6 mmol g dry cell−1 h−1 was observed. As cells entered stationary phase, extracellular pyruvate production was observed in high substrate concentration cultures and lactate became a major end product.  相似文献   

15.
16.
G Joliff  P Bguin    J P Aubert 《Nucleic acids research》1986,14(21):8605-8613
The nucleotide sequence of the celD gene, encoding the previously crystallized endoglucanase D of Clostridium thermocellum, is reported. The enzyme shares a conserved, reiterated domain with the COOH-terminal end of endoglucanases A and B from the same organism. The overexpression in Escherichia coli of celD subcloned in pUC8 appears to result from a translational fusion of the NH2-terminal end of the endoglucanase with the NH2-terminal end of beta-galactosidase.  相似文献   

17.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   

18.
Electrotransformation of Clostridium thermocellum   总被引:2,自引:0,他引:2       下载免费PDF全文
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 ± 0.5) × 105 transformants per μg of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 ± 1.8) × 104 transformants per μg of plasmid DNA for strain ATCC 27405 and ~1 × 103 transformants per μg of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was ~50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.  相似文献   

19.
Abstract The anaerobic degradation of microcrystalline cellulose by thermostable cellulolytic enzyme complexes from Clostridium thermocellum JW20 (ATCC 31449) was monitored. For quantitative investigations as enzyme-coupled spectrophotometric assay has been developed. The assay allows for the evaluation of the release of cellubiose-/glucose-units from native cellulose. Kinetic studies revealed that the anaerobic breakdown of crystalline cellulose (CC) at 60°C follows Michaelis-Menten kinetics K m CC values have been determined for different aggregation states of the cellulolytic complex. The presented assay seems well suited to screen for CC-degrading enzymes of various sources, and to further explore the mechanism of CC-breakdown.  相似文献   

20.
Electrotransformation of Clostridium thermocellum   总被引:3,自引:0,他引:3  
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 +/- 0.5) x 10(5) transformants per micro g of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 +/- 1.8) x 10(4) transformants per micro g of plasmid DNA for strain ATCC 27405 and approximately 1 x 10(3) transformants per micro g of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was approximately 50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号