首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent in situ hybridization (FISH) -- using mouse chromosome paints, probes for the mouse major centromeric satellite DNA, and probes for genes on chromosomes (Chr) 16 and 17 -- was employed to locate the breakpoint in a translocation used to produce a mouse model for Down syndrome. The Ts65Dn trisomy is derived from the reciprocal translocation T(16;17)65Dn. The Ts65Dn mouse carries a marker chromosome containing the distal segment of Chr 16, a region that shows linkage conservation with human Chr 21, and the proximal end of Chr 17. This chromosome confers trisomy for most of the genes in the Chr 16 segment and Ts65Dn mice show many of the phenotypic features characteristic of Down syndrome. We used FISH on metaphase chromosomes from translocation T65Dn/+ heterozygotes and Ts65Dn mice to show that the Chr 17 breakpoint is distal to the heterochromatin of Chr 17, that the Ts65Dn marker chromosome contains a small portion of Chr 17 euchromatin, that the Chr 16 breakpoint lies between the Ncam2 and Gabpa/App genes, and that the Ts65Dn chromosome contains >80% of the human Chr 21 homologs. The significance of this finding is discussed in terms of the utility of this mouse model.  相似文献   

2.
We have employed molecular probes and in situ hybridization to investigate the DNA sequences flanking the breakpoint of a group of t(14q21q) Robertsonian translocations. In all the families studied, the probands were patients with Down syndrome who carried a de novo t(14q21q) translocation. The DNA probes used were two alphoid sequences, alphaRI and alphaXT, which are specific for the centromeres of chromosomes 13 and 21 and of chromosomes 14 and 22, respectively; a satellite III sequence, pTRS-47, which is specific for the proximal p11 region of chromosomes 14 and 22; and a newly defined satellite III DNA, pTRS-63, which is specific for the distal p11 region of chromosome 14. The two alphoid probes detected approximately the same amount of autoradiographic signal on the translocated chromosomes as was expected for chromosomes 14 and 21 of the originating parent, suggesting that there has been no loss of these centromeric sequences during the translocation events. Results with the two satellite III probes indicated that the domain corresponding to pTRS-47 was retained in the translocated chromosomes, whereas the domain for pTRS-63 was lost. These results have allowed us to place the translocation breakpoint between the pTRS-47 and pTRS-63 domains within the p11 region of chromosome 14.  相似文献   

3.
 Spectral karyotyping (SKY) is a new fluorescence in situ hybridisation (FISH) technique that refers to the molecular cytogenetic analysis of metaphase preparations by means of spectral microscopy. For SKY of human metaphase chromosomes, 24 chromosome-specific painting probes are used in just one FISH experiment. The probes are labelled by degenerate oligonucleotide-primed PCR using three fluorochromes and two haptens. Each probe is differentially labelled with one, two, three or four fluorescent dyes, resulting in a unique spectral signature for every chromosome. After in situ hybridisation and immunodetection, a spectral image is acquired using a conventional fluorescence light microscope equipped with a custom-designed triple-bandpass filter and the SpectraCube, which is able to retrieve spectral information for every pixel in a digital CCD image. The 24-colour display and chromosome classification are based on the unique emission spectra of the chromosomes. Together with chromosome banding information from an inverted DAPI or a G-banded metaphase, a comprehensive overview of chromosomal aberrations is presented. Accepted: 3 July 1997  相似文献   

4.
Alagille syndrome is a clinically defined, dominantly inherited disorder affecting the liver, heart, face, eye, and vertebrae. Alagille syndrome has previously been localized to the short arm of chromosome 20, on the basis of reports of a small number of patients with chromosomal deletions of 20p. We undertook a cytogenetic study of patients with Alagille syndrome and identified a family in which a cytologically balanced translocation between chromosomes 2 and 20, 46,XX/XY, t(2;20)(q21.3;p12), is segregating concordantly with the disease. The breakpoint on chromosome 20p in this t(2;20) is consistent with the shortest region of overlap demonstrated in the reported deletion patients. This is the first report of a translocation associated with 20p and Alagille syndrome, and this rearrangement confirms the location of the Alagille disease gene at 20p12. We have established a somatic cell hybrid from a lymphoblastoid cell line from one of the affected individuals that contains the derivative chromosome 20 (20qter-->p12::2q21.3-->qter) but not the derivative chromosome 2, the normal chromosome 2, or the normal chromosome 20. Southern blot and PCR analysis of probes and sequences from 20p have been studied to define the location of the translocation breakpoint. Our results show that the breakpoint lies distal to D20S61 and D20S56 within band 20p12.  相似文献   

5.
6.
Summary We report cytogenetic and molecular studies on a family that carries, in the father, an unusually large chromosome 14p+ variant [WSi-var(14)(p+)] and, in one of his children, a translocation [DSi-der(14)] involving the variant chromosome. Increase in the size of WSi-var(14)(p+) was estimated to be approximately 35% that of a normal chromosome 14. Presence of extra chromosomal material in this variant chromosome was demonstrated by G-banding using trypsin and staining with Leishman, G-banding using bromodeoxyuridine (BrdU) and Giemsa, and R-banding using BrdU and Giemsa. This material was positive using C-banding with BaOH and staining with Giemsa and negative in DAPI/distamycin staining, suggesting that it contained repetitive DNA but probably not of the types found in the heterochromatic regions of chromosomes 1, 9, 15, 16, and Y. Staining of the nucleolus organiser region (NOR) with AgNO3 indicated the retention of the NOR in WSi-var(14)(p+) but not in DSi-der(14). In situ hybridisation of metaphase cells with an alpha satellite DNA probe specific for human acrocentric chromosomes demonstrated a significantly increased amount of centromeric alpha sequences in WSi-var(14)(p+). Most or all of the extra alpha sequences were retained in DSi-der(14), indicating translocation near the very distal end of the enlarged region. The extra alpha satellite DNA material may have originated through amplification of some centromeric segments. The possible role of the amplified DNA in chromosomal translocations is discussed.  相似文献   

7.
双色FISH和DNA纤维FISH方法的建立与应用   总被引:2,自引:2,他引:0  
在构建了含毛细胞白血病相关的结构性倒位inv (5) (p13.1q13.3)的细胞系后,为了确定该新建细胞系在建株过程中其倒位断裂点关键区遗传物质是否发生改变,以生物素或地高辛标记的cCI5-216 和cCI5-267黏粒DNA为探针,进行染色体中期、间期和DNA纤维3种双色荧光原位杂交的分析。结果表明:该新建细胞系的3种双色荧光原位杂交结果,均与该细胞系的原代细胞的完全相同,证实了该细胞系倒位断裂点关键区的遗传物质结构未发生改变。该细胞系是揭示毛细胞白血病发病的分子机理的重要研究材料。  相似文献   

8.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

9.
Cytogenetic analyses of constitutional diseases have disclosed several chromosomal rearrangements. At the molecular level, these rearrangements often result in the breakage of genes or alteration of genome architecture. Fluorescence in situ hybridization (FISH) and molecular investigations of a patient showing hypotonia and dysmorphic traits revealed a masked complex chromosome abnormality previously detected by G-banding as a simple 8qter deletion. To characterize the genetic rearrangements panels of bacterial artificial chromosomes (BACs) covering 8q24.22-->qter were constructed, and short tandem repeats (STRs) were used to refine the localization of the breakpoints and to assess the parental origin of the defect. Chromosome 8 displayed the breakpoint at 8q24.22 and an unexpected distal breakpoint at 8q24.23 resulting in unbalanced translocation of a small 8q genomic region on the chromosome 16qter. The study of the 16qter region revealed that the 16q subtelomere was retained and the translocated material of distal 8q was juxtaposed. Moreover, molecular analyses showed that part of the translocated 8qter segment on der(16) was partially duplicated, inverted and that the rearrangement arose in the paternal meiosis. These findings emphasize the complexity of some only apparently simple chromosomal rearrangements and suggest a subtelomeric FISH approach to enhance diagnostic care when a cytogenetic terminal deletion is found.  相似文献   

10.
A variant mouse plasmacytoma (MPC)-associated translocation chromosome has arisen by pericentric inversion and exchange of the distal segments of a Robertsonian 6;15 fusion chromosome in the CAK TEPC 1198 mouse plasmacytoma, as described earlier. In situ hybridization was performed on the normal and the inverted Rb chromosomes, using myc and kappa probes. On the normal Rb chromosome, myc was in the 15 D2/3 region, whereas kappa hybridized in the 6 C2 area, as expected. On the inverted Rb chromosome, myc remains on the centrometric side of the translocation breakpoint on the chromosome 15-derived portion, whereas kappa has moved to the chromosome 6-derived segment that joined the same breakpoint on the telomeric side. Taken together with our recent demonstration that the murine c-myc locus is oriented 'head up' on chromosome 15, and with the results of Cory and co-workers concerning the relationship between the kappa gene and the associated pvt-1 region in the CAK TEPC 1198 tumor, the following conclusions can be drawn: (i) in the variant translocation of the CAK TEPC 1198 MPC, the breakage occurs 3' of the c-myc gene, as in the human Burkitt lymphoma-associated variant translocations; (ii) the pvt-1 gene on chromosome 15 is distal to the myc gene; (iii) the kappa light chain locus is oriented 'head up' on mouse chromosome 6 and faces pvt-1 and, beyond it, c-myc, in a head-to-tail configuration.  相似文献   

11.
Ambiguous genitalia or disorder of the sexual development is a birth defect where the external genitals do not have the typical appearance of either a male or female. Here we report a boy with ambiguous genitalia and short stature. The cytogenetic analysis by G-banding revealed a small Y chromosome and an additional material on the 15p arm. Further, molecular cytogenetic analysis by Fluorescence in situ hybridization (FISH) using whole chromosome paint probes showed the presence of Y sequences on the 15p arm, confirming that it is a Y;15 translocation. Subsequent, FISH with centromere probe Y showed two signals depicting the presence of two centromeres and differing with a balanced translocation. The dicentric nature of the derivative 15 chromosome was confirmed by FISH with both 15 and Y centromeric probes. Further, the delineation of the Y chromosomal DNA was also done by quantitative real time PCR. Additional Y-short tandem repeat typing was performed to find out the extent of deletion on small Y chromosome. Fine mapping was carried out with 8 Y specific BAC clones which helped in defining the breakpoint regions. MLPA was performed to check the presence or absence of subtelomeric regions and SHOX regions on Y. Finally array CGH helped us in confirming the breakpoint regions. In our study we identified and characterized a novel complex Y chromosomal rearrangement with a complete deletion of the Yq region and duplication of the Yp region with one copy being translocated onto the15p arm. This is the first report of novel and unique Y complex rearrangement showing a deletion, duplication and a translocation in the same patient. The possible mechanism of the rearrangement and the phenotype–genotype correlation are discussed.  相似文献   

12.
The breakpoints of a translocation, t(2;14)(p11;q32), detected in an Epstein-Barr virus-transformed lymphoid B-cell line were mapped by Southern analysis, field-inversion gel electrophoresis, and in situ hybridisation. The translocation involved the immunoglobulin light-chain (kappa) locus on chromosome 2 and the heavy-chain locus on chromosome 14. The breakpoint on chromosome 2 was between VK and CK, most likely within JK. The chromosome 14 break was located within the VH cluster, no more than 220 kb 5' of the productively rearranged JH locus. The translocation probably resulted from an aberrant rearrangement of the kappa light-chain genes.  相似文献   

13.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

14.
The ribonuclease inhibitor from human placenta is a tight-binding inhibitor of alkaline and neutral ribonucleases, including the blood vessel-inducing protein, angiogenin. The location of the inhibitor gene within the human genome has now been determined. Utilizing human-rodent hybrid cell lines, it was found on chromosome 11. The localization was refined to chromosome band 11p15 by in situ hybridization of the ribonuclease inhibitor cDNA to normal metaphase chromosomes. A further refinement was obtained by in situ hybridization of the probe to metaphase chromosomes from RPMI 8402 cells, a line containing a well-characterized translocation t(11;14)(p15;q11) with a chromosome 11 breakpoint between the insulin-like growth factor 2 (IGF2) and Harvey rat sarcoma viral oncogene homolog genes. This analysis has localized the ribonuclease inhibitor gene to chromosome subband 11p15.5, distal to the IGF2 gene.  相似文献   

15.
Conserved segments of synteny between the human genome and chromosome 5 (CFA 5) of the domestic dog (Canis familiaris) have been identified by reciprocal chromosome painting analysis. A CFA 5 paint probe was applied to human metaphase spreads, revealing distinct hybridisation sites on human (HSA) chromosomes 1, 11, 16, and 17. Paint probes for these human chromosomes were then hybridised to dog metaphase spreads, identifying the regions of CFA 5 with which homology is shared with the corresponding human chromosome. Application of the CFA 5 paint probe to metaphase spreads of the domestic cat (Felis catus, FCA) demonstrated hybridisation to cat chromosomes C1, D1, E1, and E2. Dog PCR primers for type 1 markers known to lie in the corresponding regions of HSA 11, 16, and 17 were used to isolate dog BAC clones representing four genes. Fluorescence in situ hybridisation analysis confirmed their localisation to CFA 5 and suggested that two of the conserved segments lie in opposing orientations on CFA 5, compared to the human chromosome concerned. A third segment appears to lie in the same orientation on both human and dog chromosomes. No suitable gene markers were available for analysis of the fourth segment. The significance of these findings is discussed with reference to current and future dog genome mapping efforts.  相似文献   

16.
Fluorescence in situ hybridization (FISH) of human bacterial artificial chromosome (BAC) clones to orangutan metaphase spreads localized a breakpoint between human chromosome 3p25.1 and orangutan chromosome 2 to a <30-kb interval. The inversion occurred in a relatively gene-rich region with seven genes within 500 kb. The underlying breakpoint is closely juxtaposed to validated genes, however no functional gene has been disrupted by the evolutionary rearrangement. An approximately 21-kb DNA segment at the 3p25.1 breakpoint region has been duplicated intrachromosomally and interchromosomally to multiple regions in the orangutan and human genomes, providing additional evidence for the role of segmental duplications in hominoid chromosome evolution.  相似文献   

17.
This report concerns the case of a boy with partial trisomy 16p resulting from the insertional translocation of the short arm of chromosome 16 into the long arm of chromosome 1 in his father. He was referred for genetic testing because of mental retardation, short stature, microcephaly, seizures and multiple dysmorphic features. Chromosome analysis performed in the child demonstrated the presence of additional material in the long arm of chromosome 1. Paternal high resolution chromosome analysis and fluorescence in situ hybridisation revealed the following karyotype: 46,XY,ins(1;16)(q42;p13.1p13.3), while the karyotype of the boy is 46,XY,der(1),ins(1;16)(q42;p13.1p13.3)pat. This is the first reported case of partial trisomy 16p due to paternal insertional translocation.  相似文献   

18.
A family with six alive patients with partial monosomy 5p and five with partial trisomy 5p due to a t(5;15)(p13.3;p12) translocation is reported. The translocation was present in four generations with eight balanced carriers. This is the first molecular-cytogenetic and clinical study with both syndromes present in the same family. Using fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) probes, the breakpoint was mapped to 5p13.3, in the interval corresponding to the BAC clone RP11-1079N14, thereof resulting a 5pter-5p13.3 deletion or duplication of ~32 Mb. These chromosome imbalances can be considered pure, since the other imbalance produced involving chromosome 15p has no phenotypic effect. The presence of several individuals with 5p monosomy and 5p trisomy in the same family is valuable for a better delineation of both syndromes.  相似文献   

19.
20.
We have analyzed three de novo chromosome 16 rearrangements—two with a 16p+ chromosome and one a 16q+—none of which could be fully characterized by conventional cytogenetics. In each case, flow karyotypes have been produced, and the aberrant chromosome has been isolated by flow sorting. The origin of the additional material has been ascertained by amplifying and labeling the DNA of the abnormal chromosome by degenerate-oligonucleotide-primer–PCR and hybridizing it in situ to normal metaphase spreads (reverse chromosome painting). Both 16p+ chromosomes contain more than 30 Mb of DNA from the short arm of chromosome 9 (9p21.2-pter), while the 16q+ contains approximately 9 Mb of DNA from 2q37. The breakpoints on chromosome 16 have been localized in each case; the two breakpoints on the short arm are at different points within the terminal band, 16p13.3. The breakpoint on the long arm of chromosome 16 is very close to (within 230 kb of) the 16q telomere. Determination of the regions of monosomy and trisomy allowed the observed phenotypes to be compared with other reported cases involving aneuploidy for these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号