首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The taxonomic composition of bacteria associated with two species of tetrodotoxin-bearing (TTX-bearing) (Hubrechtella juliae and Lineus alborostratus) and two species of non-TTX-bearing (Quasitetrastemma stimpsoni and Malacobdella grossa) ribbon worms collected from the Peter the Great Bay of Sea of Japan was studied. Bacterial isolates were identified using 16S rRNA gene sequencing and phenotypic characteristics. Thirty-eight strains of heterotrophic bacteria from the eight genera: Pseudoalteromonas, Shewanella, Ruegeria, Pseudomonas, Defluviicoccus, Vibrio, Alteromonas, and Bacillus, were isolated and characterized. γ-Proteobacteria dominated among the associated microflora of nemerteans (76.3% of the total number of isolates). Sensitivity analysis of 38 strains to antibiotics of various classes revealed multiple resistance to three or more antibiotics in all of the studied isolates. The 15 bacterial strains isolated in the study exhibited antimicrobial activities against at least one of five indicator microorganisms, most of which corresponded to the Pseudoalteromonas genus. Screening of the TTX-producing bacteria was performed using confocal laserscanning microscopy and polyclonal antibodies. A TTX-producing strain, Pseudoalteromonas sp., was found in the nemertean H. juliae. A correlation between the presence of TTX-positive microflora and the toxicity of nemerteans was determined.  相似文献   

2.
Investigations on the microbial life in several coastal solar salterns have revealed the presence of novel organisms and synthesis of unusual molecules active in extreme conditions which might be useful in different biotechnological industries. Biodiversity of heterotrophic aerobic bacteria isolated from two salterns, Pomorie salterns and Burgas salterns located at Burgas Bay, Black Sea coast, Bulgaria, as well as ability of the isolates to synthesize biotechnologically valuable compounds were investigated. The results revealed high taxonomic and metabolic bacterial diversity—we isolated 20 morphologically different moderately halophilic and two halotolerant strains affiliated with 11 species from eight genera referred to the phyla Proteobacteria, Firmicutes, and Actinobacteria. Gram-negative bacteria belonged to the genera Halomonas, Chromohalobacter, Salinivibrio, Cobetia, and Nesiotobacter, and gram-positive strains were representatives of the genera Virgibacillus, Salinicoccus, and Brevibacterium. All isolates were found to be alkalitolerant, and 41% of them were psychrotolerant. The strains degraded nine of the tested 18 substrates; polygalacturonase, catalase, phytase, and lipase producers were predominant. This is the first reported detection of xanthan lyase, gellan lyase, arabinase, and phytase activities in halophilic bacteria. Nine of the strains belonging to five different genera were found to produce exopolysaccharides (EPS). The highest level of EPS was observed in Chromohalobacter canadensis strain 28. More than a half of the strains displayed antimicrobial activity against one to five test bacteria and yeasts. The present study is the first report on halophilic bacteria isolated from salterns at the Black Sea coast indicating that the investigated area is an untapped resource of halophilic bacteria with biotechnological potential.  相似文献   

3.
Phosphorous (P) availability is a major concern in European agriculture where reserves are limited. In the case of pea (Pisum sativum L.), one of the most important legumes in the human diet, P has specific effects on nodulation and N2 fixation. Therefore, when biofertilization schemes are considered for pea cropping, it is very important to include symbiotic dinitrogen-fixing bacteria as well as phosphate-solubilizing bacteria (PSB). In this study sixteen PSB were isolated from the rhizosphere of two pea cultivars in two French soils with different characteristics. They were phenotypically and genotypically diverse displaying 9 different Two Primers-Random Amplified Polymorphic DNA (TP-RAPD) patterns. The 16S rRNA gene analysis of representative strains showed that they belong to four highly divergent phylogenetic groups. Most of the PSB strains belonged to the genus Pseudomonas and were closely related to Pseudomonas baetica, P. lutea, P. azotoformans, P. jessenii and P. frederiksbergensis. Other strains from the genus Burkholderia were closely related to B. caledonica and those from the genus Rhizobium to R. grahamii. The single strain of genus Bacillus was close to Bacillus toyonensis. Some phylogenetic groups to which our PSB strains belong are widely distributed in plant rhizospheres in different countries and continents. This is particularly interesting in the case of strains from the phylogenetic group of P. fluorescens which includes PSB strains with high ability to solubilize phosphate indicating that they may be used as biofertilizers in many soils.  相似文献   

4.
In this work, 37 bacterial strains isolated from biofouling of marine organisms and from the Museum of Heterotrophic Bacteria of the National Scientific Center of Marine Biology were studied. The strains were identified based on their phenotypic characteristics and on the fatty acid composition of their cell wall lipids. Members of the genus Pseudoalteromonas prevailed both in associated microflora of two dinoflagellate clones and in the biofilms from marine hydrobionts. Associated microflora included also members of the CFB cluster, Bacillus, Sulfitobacter, Acinetobacter, Shewanella, and Psychrobacter. A considerable portion of strains (48.6%) exhibited antimicrobial activity. Antifouling activity against algal spores was studied using single-species bacterial biofilms and the spores of Ulva lactuca и Undaria pinnatifida, the algae most common in the Sea of Japan. Strong inhibitory effect on attachment of Ulva and Undaria spores was observed for 75 and 51% of the strains, respectively. Attached spores were, however, less sensitive to the inhibitory action of biofilms. Species specificity of algal response to bacteria was shown, with a strain having different effect on the spores of different algal species. Biotechnologically promising strains were determined, which exhibited high activity against the spores of macroalgae and could probably be used as producers of antifouling substances and as components of antifouling coatings. No relation was found between antifouling activity of bacteria and the source of their isolation. Our results indicate wide occurrence of bacteria with antifouling activity among associated microflora of marine hydrobionts and demonstrate the extent of complexity and diversity of relations between bacterial biofilms and algal spores.  相似文献   

5.
The scope of the study was to apply Phenotype Biolog MicroArray (PM) technology to test the antibiotic sensitivity of the bacterial strains isolated from on-site wastewater treatment facilities. In the first step of the study, the percentage values of resistant bacteria from total heterotrophic bacteria growing on solid media supplemented with various antibiotics were determined. In the untreated wastewater, the average shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria were 53, 56, and 42%, respectively. Meanwhile, the shares of kanamycin-, streptomycin-, and tetracycline-resistant bacteria in the treated wastewater were 39, 33, and 29%, respectively. To evaluate the antibiotic susceptibility of the bacteria present in the wastewater, using the phenotype microarrays (PMs), the most common isolates from the treated wastewater were chosen: Serratia marcescens ss marcescens, Pseudomonas fluorescens, Stenotrophomonas maltophilia, Stenotrophomonas rhizophila, Microbacterium flavescens, Alcaligenes faecalis ss faecalis, Flavobacterium hydatis, Variovorax paradoxus, Acinetobacter johnsonii, and Aeromonas bestiarum. The strains were classified as multi-antibiotic-resistant bacteria. Most of them were resistant to more than 30 antibiotics from various chemical classes. Phenotype microarrays could be successfully used as an additional tool for evaluation of the multi-antibiotic resistance of environmental bacteria and in preliminary determination of the range of inhibition concentration.  相似文献   

6.
7.
The present study aims to investigate the probiotic properties of novel strains of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China and to explore their antibacterial activity against enteropathogenic bacteria. Of the 321 isolates, 86 exhibited survival in low pH, resistance to pancreatin, and tolerance to bile salts; of these, 12 inhibited the growth of more than seven enteropathogenic bacteria and exhibited antibiofilm activities against Staphylococcus aureus CMCC26003 and/or Escherichia coli CVCC230. Based on 16S ribosomal RNA sequence analysis, the 12 isolates were assigned to Lactobacillus plantarum (7), Lactobacillus helveticus (3), Pediococcus acidilactici (1), and Enterococcus faecium (1) species. In addition, 5 of the 12 strains were susceptible to most of the tested antibiotics. Furthermore, four strains with sensitivity to antibiotics showed significantly high levels of hydrophobicity similar to or better than the reference strain Lactobacillus rhamnosus GG. Moreover, three strains were confirmed safe through non-hemolytic activities and bacterial translocation. Overall, the selected Lact. plantarum 27053 and 27172 and Lact. helveticus 27058 strains can be considered potential probiotic strains and candidates for further application in functional food and prevention or treatment of gastrointestinal diseases.  相似文献   

8.
From swabs of surfaces of equipment and air samples of the Russian segment of the International Space Station, nine strains of spore-forming bacteria of the genus Bacillus belonging to the species B. pumilus, B. licheniformis, B. subtilis, B. megaterium, and B. amyloliquefaciens were isolated. The last species of bacilli on the equipment of RS ISS was detected for the first time. For these species of bacilli, there are known strains that can be opportunistic to humans, and their metabolites can cause biodegradation of equipment and materials. B. pumilus found on ISS belongs to the group of bacteria that exhibits a particularly high resistance to adverse environmental conditions, such as dehydration, ultraviolet and gamma radiation, and chemical disinfection.  相似文献   

9.
Fluorescent in situ hybridization (FISH) and PCR were used for analysis of phylogenetic structure of anaerobic sulfate-reducing bacterial communities in oxygen-containing upper water layers of meromictic basins: the Black Sea and the Gdansk Deep of the Baltic Sea. In the Black Sea (continental slope at depths 30–70 m), cells of sulfate-reducing bacteria (SRB) hybridizing with 16S rRNA-specific FISH-probes for Desulfotomaculum, Desulfobacter, and Desulfovibrio genera were revealed, whereas Desulfomicrobium-related bacteria were prevalent in the chemocline zone at a 150-m depth. Besides Desulfotomaculum (SRB subgroup 1), Desulfobacter (SRB subgroup 4), and Desulfovibrio-Desulfomicrobium (SRB subgroup 6), nested PCR with the use of 16S rRNA gene-specific primers detected the presence of Desulfococcus–Desulfonema–Desulfosarcina (SRB subgroup 5) in the oxygen-containing water column of the Black and Baltic seas. Active enrichment SRB culture that contained bacterium Desulfosporosinus sp. as a major component was obtained from the Black Sea water sample collected at a 70-m depth.  相似文献   

10.
Fish gut bacteria can be used as probiotics for aquaculture. The aim of this study is to screen and identify beneficial probiotic bacteria from the gut of Nile tilapia, Oreochromis niloticus. Nine out of one hundred thirty-five isolates were non-pathogenic through intraperitoneal injection and had antibacterial activities with at least a strain from the five isolated fish pathogens, Aeromonas sobria, Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas putida, and Staphylococcus aureus. Further tests showed that such isolates can survive in the presence of high bile concentration (10%) and at different acidic pH values. A strains (14HT) was sensitive to all selected antibiotics, two strains were (9HT and 11HT) resistant to streptomycin and three strains (9HT, 11HT and 38HT) had resistance to two antibiotics. Four isolates (11HT, 33HT, 38HT and 41HT) had an amylase and a protease activities and one strain (47HT) showed only amylase activity. Based on 16S rRNA gene analysis, the isolated strains were identified as follows: Lactococcus lactis (8HT, 9HT, 11HT and 33HT); Enterococcus faecalis (14HT), Lysinibacillus sp. (38HT) and Citrobacter freundii (39HT, 41HT and 47HT).  相似文献   

11.
The Black Sea is the largest meromictic basin, in the bottom sediments of which a powerful biogenic process of sulfide production occurs. The goal of the present work was to obtain data on phylogenetic diversity of the sulfur cycle microorganisms (sulfate-reducing and sulfur-oxidizing bacteria) in the Black Sea coastal gas-saturated bottom sediments. The samples were collected in the Chersonesus (Blue) Bay near Sevastopol from whitish bacterial mats of sulfurettes, and from the upper layer of the nearby seabed. Using DNA isolated from the native samples and obtained enrichment cultures, PCR analysis was performed with oligonucleotide primers specific to the fragments of the 16S rRNA genes of the main subgroups of sulfatereducing bacteria (SRB) and to the fragments of the dsrB gene (both reductive and oxidative types), encoding the β-subunit of dissimilatory (bi)sulfite reductase, the key enzyme in the sulfur cycle, inherent in both sulfate- reducing and sulfur-oxidizing microorganisms. The presence of 16S rRNA gene fragments specific to the genera Desulfobacterium, Desulfobacter, Desulfococcus–Desulfonema–Desulfosarcina, and Desulfovibrio–Desulfomicrobium was detected in the DNA samples isolated from coastal bottom bacterial mats. Usage of denaturing gradient gel electrophoresis (DGGE) with subsequent sequencing of reamplified dsrB gene fragments revealed that according to deduced amino acid sequences encoded by the dsrB gene (reductive type), SRB from the coastal gas-saturated bottom sediments of the Black Sea had the highest homology (92?99%) with the dsrB gene of cultured SRB belonging to the genera Desulfovibrio, Desulfatitalea, Desulfobacter, and Desulfobacterium, as well as with uncultured SRB strains from various marine habitats, such as bottom sediments of the Northern and Japanese seas. Deduced amino acid sequences encoded by the oxidative dsrB gene had the highest homology (90?99%) with the relevant sequences of the genera Thiocapsa, Thiobaca, Thioflavicoccus, and Thiorhodococcus.  相似文献   

12.
The present study focused on identification and genotypic characterization of Lactic acid bacteria (LAB) in the intestine of freshwater fish. 76 strains of LAB were isolated and identified by 16S rRNA gene sequences and hsp60 gene sequences as different strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus salivarius, Pediococcus pentosaceus, Pediococcus acidilactici, Weissella paramesenteroides, Weissella cibaria, Enterococcus faecium, and Enterococcus durans. The hsp60 gene showed a higher level of sequence variation among the isolates examined, with lower interspecies sequence similarity providing more resolutions at the species level than the 16S rRNA gene. Phylogenetic tree derived from hsp60 gene sequences with higher bootstrap values at the nodal branches was more consistent as compared to phylogenetic tree constructed from 16S rRNA gene sequences. Closely related species L. plantarum and L. pentosus as well as species L. delbrueckii subsp. bulgaricus and L. fermentum were segregated in different cluster in hsp60 phylogenetic tree whereas such a distribution was not apparent in 16S rRNA phylogenetic tree. In silico restriction analysis revealed a high level of polymorphism within hsp60 gene sequences. Restriction pattern with enzymes AgsI and MseI in hsp60 gene sequences allowed differentiation of all the species including closely related species L. plantarum and L. pentosus, E. faecium and E. durans. In general, hsp60 gene with higher evolutionary divergence proved to be a better phylogenetic marker for the group LAB.  相似文献   

13.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, γ-Proteobacteria, and α-Proteobacteria) resistant to aminoglycoside antibiotics (gentamicin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

14.
We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV–Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml?1) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml?1), B. subtilis and E. coli (both 64 µg ml?1), and then S. aureus and Klebsiella pneumoniae (256 µg ml?1). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml?1, respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The antimicrobial activity of AgNPs could result from their small size. Remarkable synergistic effect of antibiotics and AgNPs offer their valuable potential in nanomedicine for clinical application as a combined therapy in the future.  相似文献   

15.
Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.  相似文献   

16.
The screening of three strains of lactic acid bacteria identified as Lactobacillus rhamnosus, Lactobacillus reuteri, and Lactobacillus helveticus showed significant antagonistic activity against Klebsiella pneumoniae strains characterized by multiple antibiotic resistance. Lactobacilli cocultivated with the Klebsiella strains inhibited their growth 20 to 86% on the first and second days, respectively. Exoproteome analysis of L. rhamnosus cocultivated with K. pneumoniae revealed the induction of peptidoglycan hydrolases, including extracellular lytic transglycosylases, family II (MltA), and endopeptidases capable of disrupting the peptidoglycan bacterial cell wall.  相似文献   

17.
Bacterial strains (93 isolates) capable of growth on full-strength nutrient media were isolated from 86 fungal fruit bodies collected in the Moscow region. Antimicrobial activity of the endobiont isolates against 12 bacterial and fungal test strains (including drug-resistant ones) was studied in submerged cultures. Most of the strains (84.9%) were found to produce antibiotic compounds with different antimicrobial properties, including antifungal activity in 18.3% of the strains. Morphological characteristics and analysis of the 16S rRNA gene sequences were used to determine the taxonomic position of 16 bacterial strains of the following 10 species: Bacillus subtilis, Ewingella americana, Pseudomonas sp., Stenotrophomonas maltophilia, as well as Achromobacter spanius, B. licheniformis, Hafnia paralvei, Micrococcus terreus, Nocardia coeliaca, and St. rhizophila, which have not been previously known to be endobionts of basidiomycete fruit bodies. Antimicrobial activity of A. spanius, E. americana, H. paralvei, M. terreus, N. coeliaca, and St. rhizophila has not been reported previously. Complex mechanisms of symbiotic relations between fungi and bacteria, including those associated with antibiotic formation, probably developed in the course of co-evolution.  相似文献   

18.
19.
Aeromonads represent bacteria thought to be primarily mostly autochthonous to aquatic environments. This study was focused on the relation with antibiotics and enterocins of identified Aeromonas species isolated from the intestine of trouts living in Slovakian aquatic sources. Intestinal samples from 50 trouts (3 Salmo trutta and 47 Salmo gairdnerii) were collected in April of years 2007, 2010, and 2015 from trouts of different water sources in Slovakia (pond Bukovec near Ko?ice, river ?ierny Váh). Due to the MALDI-TOF mass spectrometry evaluation, 25 strains were proposed to the genus Aeromonas involving nine different species (Aeromonas bestiarum—nine strains, Aer. salmonicida—four strains, Aer. encheleia, Aer. eucrenophila, Aer. molluscorum, Aer. media, Aer. sobria, Aer. popoffii, Aer. veronii). Phenotypic evaluation of individual strains confirmed their species identification. Twenty-five strains of different Aeromonas species were sensitive to azithromycin, amikacin, mecillinam, mezlocillin, piperacillin, gentamicin, chloramphenicol, and tetracycline. On the other side, they were resistant to carbenicillin and ticarcillin. The growth of Aer. bestiarum R41/1 was inhibited by treatment with Ent M and Ent 2019 (inhibition activity 100 AU/mL). Aer. bestiarum R47/3 was inhibited by eight enterocins (100 AU/mL). It is the first study testing enterocins to inhibit the growth of Aeromonas species from trouts.  相似文献   

20.
The genus Pseudomonas is one of the most diverse and ecologically important groups of bacteria. Numerous representatives of the genus are found in microbial communities of all natural environments, including those closely associated with plants and animals. This ubiquitous distribution determines a necessity of their physiological and genetic adaptations. Molecular methods revealed that bacteria of the genus Pseudomonas were predominant in ulcerative lesions on the skin of Baikal yellowfin Cottocomephorus grewingkii (Dybowski, 1874). According to ribosomal phylogeny, cultivated Pseudomonas spp. isolated from both ulcerative lesions and the water column of Lake Baikal were grouped into the intrageneric cluster IG P. fluorescens. The topology of the phylogenetic tree based on the gene for outer membrane porin OprF generally coincided with that based on the 16S rRNA genes at the intrageneric level; however, it reflected ecological features of the strains of the genus Pseudomonas at the subgroup level. Screening of pathogenicity determinants detected the oprL, ecfX, fliC, and algD genes in the genomes of Pseudomonas spp. isolated from the ulcerative lesions of fish, whereas oprL and gyrB genes were determined in the strains isolated from the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号