首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Using the Genolevures sequencing data, we developed an expression micro-array for the yeast Kluyveromyces lactis consisting of 482 genes, mainly involved in central metabolism, compound transport facilitators and stress response. The array was validated using the LAC/GAL system. By comparing gene expression in the laboratory reference strain CBS2359 and in an industrial strain B1, we demonstrated the influence of two carbon sources, glucose and lactose, on the expression of genes involved in the respiratory and in the fermentative metabolic pathways. We also showed that the two strains, although both originating from dairies, display unexpected differences in gene expression on each type of carbon source.  相似文献   

6.
7.
8.
Gal1p carries out two functions in the galactose pathway of yeast. It activates Gal4p by interacting with Gal80p – a function that can also served by Gal3p – and it catalyzes the formation of galactose-1-phosphate. Recently, we and others have presented biochemical evidence for complex formation between Gal1p and Gal80p. Here, we extend these data and present genetic evidence for an interaction between Gal1p and Gal80p in vivo, using a two-hybrid assay. Interaction between Gal1p and Gal80p depends on the presence of galactose, but not on the catalytic activity of Gal1p. A new class of Kluyveromyces lactis mutants was isolated, designated Klgal1-m, which have lost the derepressing activity but retain galactokinase activity, indicating that the two Gal1p activities are functionally independent. The KlGal1-m proteins are defective in their ability to interact with Gal80p in a two-hybrid assay. The locations of gal1-m mutations identify putative interaction sites in Gal1p and Gal80p. A dominant mutation, KlGAL1-d, leads to a high level of constitutive expression of genes of the galactose pathway. The behavior of chimeric proteins consisting of Gal3p and KlGal1p sequences indicates that both the N-terminal and C-terminal halves of KlGal1p are involved in specific interaction with KlGal80p. Received: 12 November 1998 / Accepted: 18 December 1998  相似文献   

9.
tRNA anticodon damage inflicted by the Kluyveromyces lactis γ-toxin underlies an RNA-based innate immune system that distinguishes self from nonself species. γ-toxin arrests the growth of Saccharomyces cerevisiae by incising a single phosphodiester 3' of the wobble base of tRNA(Glu(UUC)) to generate a break with 2',3'-cyclic phosphate and 5'-OH ends. Recombinant γ-toxin cleaves oligonucleotide substrates in vitro that mimic the anticodon stem-loop of tRNA(Glu). A single 2'-deoxy sugar substitution at the wobble nucleoside abolishes anticodon nuclease activity. To gain further insights to γ-toxin's substrate specificity, we tested deoxynucleoside effects at positions other than the site of transesterification. The results attest to a stringent requirement for a ribonucleoside at the uridine 5' of the wobble base. In contrast, every other nonwobble ribonucleoside in the anticodon loop can be replaced by a deoxy without significantly affecting γ-toxin's cleavage activity. Whereas either the 5' half or the 3' half of the anticodon stem can be replaced en bloc with DNA without a major effect, simultaneously replacing both strands with DNA interfered strongly, signifying that γ-toxin requires an A-form helical conformation of the anticodon stem. We purified γ-toxin mutants identified previously as nontoxic in vivo and gauged their anticodon nuclease activities in vitro. The results highlight Glu9 and Arg151 as candidate catalytic residues, along with His209 implicated previously. By analogy to other endoribonucleases, we speculate that γ-toxin drives transesterification by general acid-base catalysis (via His209 and Glu9) and transition-state stabilization (via Arg151).  相似文献   

10.
11.
G D Clark-Walker  X J Chen 《Genetics》2001,159(3):929-938
Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for rho(0)-lethality has been identified by disruption of nuclear genes encoding electron transport and F(0)-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, Delta Psi, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F(1)F(0)-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or rho(0)-lethality can be suppressed by the atp2.1 mutation in the beta-subunit of F(1)-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F(1), allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain Delta Psi. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F(1) acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of rho(0)-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.  相似文献   

12.
Transformation of Kluyveromyces lactis by Electroporation   总被引:1,自引:0,他引:1       下载免费PDF全文
The physical and biological parameters involved in efficient transformation of Kluyveromyces lactis by electroporation have been analyzed. By using an optimum voltage and a constant volume of cell suspension in a cuvette, the efficiency of transformation increased with increases in cell numbers and plasmid concentration. However, the most important parameter was the time of the pulse. Changes of 1 ms decreased the efficiency of transformation more than 70 to 80%. Under our best conditions, between 106 and 107 transformants per μg of plasmid DNA could be obtained. Under certain conditions, the size of the plasmid also affected electroporation efficiency. In any case, we did not obtain integrative transformation with an autonomously replicating plasmid.  相似文献   

13.
We have identified two Saccharomyces cerevisiae genes that, in high copy, confer resistance to Kluyveromyces lactis zymocin, an inhibitor that blocks cells in the G(1) phase of the cell cycle prior to budding and DNA replication. One gene (GRX3) encodes a glutaredoxin and is likely to act at the level of zymocin entry into sensitive cells, while the other encodes Sap155p, one of a family of four related proteins that function positively and interdependently with the Sit4p protein phosphatase. Increased SAP155 dosage protects cells by influencing the sensitivity of the intracellular target and is unique among the four SAP genes in conferring zymocin resistance in high copy, but is antagonized by high-copy SAP185 or SAP190. Since cells lacking SIT4 or deleted for both SAP185 and SAP190 are also zymocin resistant, our data support a model whereby high-copy SAP155 promotes resistance by competition with the endogenous levels of SAP185 and SAP190 expression. Zymocin sensitivity therefore requires a Sap185p/Sap190p-dependent function of Sit4p protein phosphatase. Mutations affecting the RNA polymerase II Elongator complex also confer K. lactis zymocin resistance. Since sit4Delta and SAP-deficient strains share in common several other phenotypes associated with Elongator mutants, Elongator function may be a Sit4p-dependent process.  相似文献   

14.
15.
The GAL3 gene plays a critical role in galactose induction of the GAL genes that encode galactose- metabolizing enzymes in Saccharomyces cerevisiae. Defects in GAL3 result in a long delay in GAL gene induction, and overproduction of Gal3p causes constitutive expression of GAL. Here we demonstrate that concomitant overproduction of the negative regulator, Gal80p, and Gal3p suppresses this constitutive GAL expression. This interplay between Gal80p and Gal3p is direct, as tagged Gal3p coimmunoprecipitated with Gal80p. The amount of coprecipitated Gal80p increased when GAL80 yeast cells were grown in the presence of galactose. When both GAL80 and GAL3 were overexpressed, the amount of coprecipitated Gal80p was not affected by galactose. Tagged gal3 mutant proteins bound to purified Gal80p, but only poorly in comparison with the wild type, suggesting that formation of the Gal80p-Gal3p complex depends on the normal function of Gal3p. Gal3p appeared larger in Western blots (immunoblots) than predicted by the published nucleic acid sequence. Reexamination of the DNA sequence of GAL3 revealed several mistakes, including an extension at the 3' end of another predicted 97 amino acids.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号