首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
This study reveals that AA and AG oppositions occur frequently at the ends of helices in RNA crystal and NMR structures in the PDB database and in the 16 S and 23 S rRNA comparative structure models, with the G usually 3' to the helix for the AG oppositions. In addition, these oppositions are frequently base-paired and usually in the sheared conformation, although other conformations are present in NMR and crystal structures. These A:A and A:G base-pairs are present in a variety of structural environments, including GNRA tetraloops, E and E-like loops, interfaced between two helices that are coaxially stacked, tandem G:A base-pairs, U-turns, and adenosine platforms. Finally, given structural studies that reveal conformational rearrangements occurring in regions of the RNA with AA and AG oppositions at the ends of helices, we suggest that these conformationally unique helix extensions might be associated with functionally important structural rearrangements.  相似文献   

15.
16.
17.
18.
Olfaction is essential for regulating the physiological and behavioral actions of insects with specific recognition of various odors. Antheraea moths (Lepidoptera: Saturniidae) possess relatively large bodies and antennae so that they are good subjects for exploring molecular aspects of insect olfaction. Current knowledge of the molecular aspects of Antheraea olfaction is focused on the Chinese tussah silkmoth A. pernyi Guérin-Méneville and another species A. polyphemus (Cramer) in their pheromones, odorant-binding proteins (OBPs), odorant receptors (ORs), odorant receptor coreceptors (ORCOs), sensory neuron membrane proteins (SNMPs), and odorant-degrading enzymes (ODEs). The first insect OBP, SNMP, and ODE were identified from A. polyphemus. This review summarizes the principal findings associated with the olfactory physiology and its molecular components in the two Antheraea species. Three types of olfactory neurons may have specific ORs for three respective sex-pheromone components, with the functional sensitivity and specificity mediated by three respective OBPs. SNMPs and ODEs are likely to play important roles in sex-pheromone detection, inactivation, and degradation. Identification and functional analysis of the olfactory molecules remain to be further performed in A. pernyi, A. polyphemus, and other Antheraea species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号