首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The oxygenated complexes of the two catalytically active forms of pseudomonad and rat liver L-tryptophan-2,3-dioxygenase (EC 1.13.11.11) have been studied. As was previously reported (ISHIMURA, Y., NORZAKI, M., HAYAISHI, O., TAMURA, M., AND YAMAZAK-I I. (1970) J. Biol. Chem. 245, 3593-3602), we observe that the fully reduced form of pseudomonad tryptophan oxygenase during steady state catalysis exists predominantly as the L-tryptophan ferroheme-O2 enzyme complex (lambdamax = 415 nm, 540 nm, 570 nm). However, during steady state catalysis by a half-reduced form of both the pseudomonad and hepatic enzymes, the predominant species present manifest absorption spectra indicative of ternary complexes in which all the heme exists as ferriheme (Soret, 407 nm), there being no trace of a ferroheme-O2 complex. Carbon monoxide is a competitive inhibitor with respect to molecular oxygen of catalysis by either the half-reduced or fully reduced forms of pseudomonad tryptophan oxygenase. During steady state catalysis in the presence of CO, the fully reduced form of the enzyme exists as a mixture of the oxyferroheme (Soret = 415 nm) and carboxyferroheme (Soret = 421 nm) enzyme complexes. However, if the same experiment is repeated with the half-reduced form of the pseudomonad enzyme, all of the enzyme is in the ferriheme state, even though CO is inhibiting this form of the enzyme to the same degree as it does the fully reduced form. We conclude that for the half-reduced form of pseudomonad tryptophan oxygenase the substrate, O2, and the inhibitor, CO, are not binding to the heme moieties, but are bound elsewhere, presumably to the Cu(I) moieties. Examination of the kinetic mechanisms of the half-reduced and fully reduced forms of pseudomonad tryptophan oxygenase using the inhibitors carbon monoxide and 5-fluorotryptophan confirmed that the fully reduced enzyme binds L-tryptophan before O2 (FORMAN, H., AND FEIGELSON, P. (1971) Biochemistry 10, 760-763) and that for the half-reduced enzyme O2 binds first. In the presence of 5-fluorotryptophan a relatively stable oxyferroheme enzyme complex was generated with the fully reduced form of pseudomonad tryptophan oxygenase. Thus, saturation of the catalytic site alone either with the substrate, L-tryptophan, or the competitive inhibitor, 5-fluorotryptophan, enhances binding of O2 to the ferroheme moieties of the enzyme. The resistance of this complex to photolysis indicates that the bound molecular oxygen is predominantly present as superoxide, O2-minus.  相似文献   

2.
During the purification of L-tryptophan 2,3-dioxygenase, a protohemoprotein from rat liver, both copper and heme contents of the preparations were found to be progressively increased as purification proceeded. However, the greater part of copper was removed in the late stages of the purification giving a copper to heme ratio less than 0.4. The small amounts of copper could further be reduced by one-half, by a mild treatment of enzyme with chelators such as ethylenedi aminetetraacetate, without any accompanying decrease in enzymatic activity. Since the turnover number of these enzyme preparations expressed per mol of enzyme-bound heme, 200 to 277 min-1 at 25 degrees, were either comparable to or slightly higher than those reported with homogeneous enzyme preparations, the heme in the preparation was considered to be of fully active L-tryptophan 2,3-dioxygenase and, therefore, such a small ratio of copper to heme, 0.1 to 0.3, indicated that copper is not a constituent of L-tryptophan 2,3-dioxygenase of rat liver. The findings were thus inconsistent with the results of Brady et al. (Brady, F. O., Monaco, M. E. Forman, H. J. Schutz, G., and Feigelson, P. (1972) J. Biol. Chem. 247, 7915-7922), who found that L-tryptophan 2,3-dioxygenase contained 2 g atoms of copper and 2 mol of heme/mol of enzyme. Possible reasons for this discrepancy have been discussed.  相似文献   

3.
The relationship between L-tryptophan uptake and tryptophan 2,3-dioxygenase activity in hepatocytes was examined and compared with the change of hepatic L-leucine, L-phenylalanine, and L-tyrosine uptakes using isolated hepatocytes of rats in which the oxygenase was induced with L-tryptophan or hydrocortisone. In L-tryptophan- or hydrocortisone-treated rat hepatocytes, the rate of L-tryptophan uptake into hepatocytes via the saturable high-affinity transport component significantly increased but the hepatic uptake rate of L-leucine did not change at all. In hydrocortisone-treated rat hepatocytes, a little stimulated hepatic uptake of L-phenylalanine or L-tyrosine was observed. In the stimulated hepatic uptake of L-tryptophan via the high-affinity transport component, the Km value did not change but the Vmax value increased. Liver plasma membranes prepared from rats treated with L-tryptophan or hydrocortisone showed the same binding rate of L-tryptophan to the membranes as those from control rats. In addition, hepatic L-tryptophan uptake via the high-affinity transport component correlated well with hepatic tryptophan 2,3-dioxygenase activity (r = 0.787). The present results indicate that the uptake of L-tryptophan into hepatocytes via a transport system which works under physiological conditions is closely related to hepatic tryptophan 2,3-dioxygenase activity.  相似文献   

4.
Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Tryptophan 2,3-dioxygenase [L-tryptophan--oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11] has been reported to act solely on the L-isomer of tryptophan. However, by using a sensitive assay method with D- and L-[ring-2-14C]tryptophan and improved assay conditions, we were able to demonstrate that both the D- and L-stereoisomers of tryptophan were cleaved by the supernatant fraction (30000 g, 30 min) of liver homogenates of several species of mammals, including rat, mouse, rabbit and human. The ratio of activities toward D- and L-tryptophan was species variable, the highest (0.67) in ox liver and the lowest (0.07) in rat liver, the latter being hitherto exclusively used for the study of hepatic tryptophan 2,3-dioxygenase. In the supernatant fraction from mouse liver, the ratio was 0.23 but the specific activity with D-tryptophan was by far the highest of all the species tested. To identify the D-tryptophan cleaving enzyme activity, the enzyme was purified from mouse liver to apparent homogeneity. The specific activities toward D- and L-tryptophan showed a parallel rise with each purification step. The electrophoretically homogeneous protein had specific activities of 0.55 and 2.13 mumol/min per mg of protein at 25 degrees C toward D- and L-tryptophan, respectively. Additional evidence from heat treatment, inhibition and kinetic studies indicated that the same active site of a single enzyme was responsible for both activities. The molecular weight (150000), subunit structure (alpha 2 beta 2) and haem content (1.95 mol/mol) of the purified enzyme from mouse liver were similar to those of rat liver tryptophan 2,3-dioxygenase. The assay conditions employed in the previous studies on the stereospecificity of hepatic tryptophan 2,3-dioxygenase were apparently inadequate for determination of the D-tryptophan cleaving activity. Under the assay conditions in the present study, the purified enzyme from rat liver also acted on D-tryptophan, whereas the pseudomonad enzyme was strictly specific for the L-isomer.  相似文献   

5.
L-Tryptophan, 2,3-dioxygenase (EC 1.13.11.11) has been purified to homogenity from L-tryptophan induced Pseudomonas acidovorans (ATCC 11299b) and from L-tryptophan and cortisone induced rat liver. The enzyme from both sources is composed of four subunits and contains two g-atoms copper and two moles heme per mole tetramer. The proteins from the two sources are not identical. Three oxidation states of tryptophan oxygenase have been isolated: (1) fully oxidized, [Cu(II)]2[Ferriheme]2; (2) half reduced, [Cu(i)]2[ferriheme]2; and (3) fully reduced, [Cu(I)]2[ferroheme]2. Catalytic activity is dependent solely on the presence of Cu(I) in the enzyme, the heme may be either ferro or ferri. The presence of Cu(II) in the enzyme results in a requirement for an exogenous reductant, such as ascorbate, in order to elicit enzymic activity. Ligands, such as cyanide and carbon monoxide, can inhibit catalysis by binding to either or to both the copper and heme moieties. Metal complexing agents, such as bathocuproinesulfonate and bathophenanthrolinesulfonate, can inhibit catalysis by binding to Cu(I) resent only in catalytically active enzyme molecules. During catalysis by the fully reduced form of the enzyme, molecular oxygen binds to the heme moieties, while during catalysis by the half reduced form of the enzyme it does not, presumably binding instead to the Cu(I) moieties. Enzymes that catalyze similar reactions have been purified from other sources. Indoleamine 2,3-dioxygenase appears to be a heme protein, but its copper content is unknown. Pyrrolooxygenases appear to be completely different enzymes, although they have not yet been purified to homegeneity.  相似文献   

6.
Interferon-gamma-induced tryptophan metabolism of human macrophages was compared to ten human neoplastic cell lines of various tissue origin and to normal dermal human fibroblasts. Tryptophan and metabolites were determined in supernatants of cultures, after incubation for 48 h, by high-performance liquid chromatography with ultraviolet and fluorescence detection. With the exception of two cell lines (Hep G 2, hepatoma and CaCo 2, colon adenocarcinoma) in all of the ten other cells and cell lines tryptophan degradation was induced by interferon-gamma. Five of these ten formed only kynurenine (SK-N-SH, neuroblastoma; T 24, J 82, bladder carcinoma; A 431, epidermoid carcinoma; normal dermal fibroblasts), three formed kynurenine and anthranilic acid (U 138 MG, glioblastoma; SK-HEP-1, hepatoma; A 549, lung carcinoma). Only one line, A 498 (kidney carcinoma) showed the same pattern of metabolites as macrophages (kynurenine, anthranilic acid and 3-hydroxyanthranilic acid). Interferon-gamma regulated only the activity of indoleamine 2,3-dioxygenase. All other enzyme activities detected were independent of interferon-gamma, as shown by the capacity of the cells to metabolize L-kynurenine or N-formyl-L-kynurenine. Increasing the extracellular L-tryptophan concentration resulted in a marked induction of tryptophan degradation by macrophages. Contrarily, a significant decrease of the tryptophan degrading activity was observed when the extracellular L-tryptophan concentration was increased 2-fold with SK-N-SH, T 24 and J 82, 4-fold with A 431 and A 549 and 10-fold with U 138 MG and SK-HEP-1. The activity was unaffected by extracellular L-tryptophan with dermal fibroblasts and A 498. Though interferon-gamma was the most potent inducer of tryptophan metabolism, interferon-alpha and/or -beta showed small but distinct action on some of the cells. In all cells which reacted to interferon-gamma by enhanced expression of class I and/or class II major histocompatibility complex antigens tryptophan degradation was also inducible. These results demonstrate that induction of indoleamine 2,3-dioxygenase is a common feature of interferon-gamma action, that the extent of this induction is influenced by extracellular L-tryptophan concentrations and that indoleamine 2,3-dioxygenase is the only enzyme in the formation of 3-hydroxyanthranilic acid from tryptophan which is regulated by interferon-gamma.  相似文献   

7.
A number of enzymes are induced by steroid hormones. In this paper the reaction of tryptophan 2,3-dioxygenase is further analyzed. In particular we show in which way the substrate and low doses of cortisone cause an induction. 1) For the induction of tryptophan 2,3-dioxygenase in adrenalectomized rats by 2.5 mg cortisone/kg, the presence of the substrate is necessary as well. Under these conditions an induction of the enzyme can already be registered in the presence of 12.5 mg L-tryptophan/kg. 2) In animals treated before with cortisone, the enzyme maximum appears 30 min after L-tryptophan injection, The enhancement of enzyme activity in animals which are treated with 2.5 mg cortisone/kg before is blocked by actidione only until 30 min after L-tryptophan injection. 3) Experiments with antibodies in animals treated with a low dosis of cortisone show that L-tryptophan acts mainly via enzyme degradation or the saturation with the coenzyme hematin, respectively.  相似文献   

8.
Heme oxygenase was purified to apparent homogeneity from liver microsomes of rats which had been treated with either cobaltous chloride or hemin to induce heme oxygenase in the liver and the purified preparations from either rats showed an apparent molecular weight of about 200,000 when estimated by gel filtration on a column of Sephadex G-200, and gave a minimum molecular weight of about 32,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hepatic heme oxygenase could bind heme to form a heme . heme oxygenase complex showing an absorption peak at 405 nm, and the extinction coefficient at 405 nm of the heme . heme oxygenase complex was 140 mM-1 cm-1. The heme bound to the hepatic heme oxygenase protein was easily converted to biliverdin when the complex was incubated with the NADPH-cytochrome c reductase system in air. The hepatic heme oxygenase appears to have characteristics essentially similar to those of the splenic heme oxygenase (Yoshida, T., and Kikuchi, G. (1978) J. Biol. Chem. 253, 4224 and 4230). The heme oxygenase preparation which was purified from the cobalt-treated rats contained a small amount of cobaltic protoporphyrin, indicating that cobalt protoporphyrin was synthesized in these rats.  相似文献   

9.
Interferon-gamma (IFNG) induces apoptotic cell death in bovine luteal cells, but the pathway(s) involved in this process are not well defined. Evidence supporting the involvement of an IFNG-inducible enzymatic pathway that degrades tryptophan in IFNG-induced death of bovine luteal cells is presented in this study. The IFNG-inducible enzyme indoleamine 2,3-dioxygenase (INDO) catalyzes the first step in a metabolic pathway that degrades tryptophan. In the first experiment, RT-PCR revealed the presence of INDO mRNA in luteal cells treated with IFNG, but not in untreated cells. To determine whether INDO participates in IFNG-induced death of bovine luteal cells, an experiment was performed to test the effect of 1-methyl-D-tryptophan (1-MT), an inhibitor of INDO, on IFNG-induced DNA fragmentation in luteal cells. Single-cell gel electrophoresis and microscopic image analysis revealed that 1-MT inhibited DNA fragmentation induced by IFNG. To determine whether supplementation of cell cultures with additional tryptophan could also protect luteal cells from IFNG-induced DNA fragmentation, luteal cells were cultured in the presence of IFNG, and L-tryptophan was added to cultures to achieve final concentrations that were 5-, 10-, or 25-fold higher than the concentration of L-tryptophan found in nonsupplemented culture medium. Supplementation of IFNG-treated luteal cell cultures with elevated concentrations of tryptophan also prevented IFNG-induced DNA fragmentation. We conclude that INDO participates in IFNG-induced death of bovine luteal cells, through a mechanism that involves degradation of tryptophan, thereby reducing tryptophan concentrations to a point insufficient to meet luteal cells needs.  相似文献   

10.
The family of heme dioxygenases, as exemplified by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase, catalyzes the oxidative cleavage of L-tryptophan to N-formylkynurenine. Here, we describe a bacterial expression system for human tryptophan 2,3-dioxygenase (rhTDO) together with spectroscopic, kinetic, and redox analyses. We find unexpected differences between human tryptophan 2,3-dioxygenase and human indoleamine 2,3-dioxygenase [Chauhan et al. (2008) Biochemistry 47, 4761-4769 ]. Thus, in contrast to indoleamine 2,3-dioxygenase, the catalytic ferrous-oxy complex of rhTDO is not observed, nor does the enzyme discriminate against substrate binding to the ferric derivative. In addition, we show that the rhTDO is also catalytically active in the ferric form. These new findings illustrate that significant mechanistic differences exist across the heme dioxygenase family, and the data are discussed within this broader framework.  相似文献   

11.
12.
β-Carboline derivatives inhibited both indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase activities from various sources. Among them, norharman is most potent for both enzymes from mammalian sources. Kinetic studies revealed that norharman is uncompetitive (Ki = 0.12 mm) with l-tryptophan for rabbit intestinal indoleamine 2,3-dioxygenase, and linearly competitive (Ki = 0.29 mm) with l-tryptophan for mouse liver tryptophan 2,3-dioxygenase. In addition, some β-carbolines selectively inhibited one enzyme or the other. Pseudomonad tryptophan 2,3-dioxygenase was inhibited by a different spectrum of β-carbolines. Such a selective inhibition by the structure of substrate analogs is more evident by the use of indole derivatives. Indole-3-acetamide, indole-3-acetonitrile and indole-3-acrylic acid exhibited a potent inhibition for mammalian tryptophan 2,3-dioxygenase, while they moderately inhibited the pseudomonad enzyme. However, they showed no inhibition for indoleamine 2,3-dioxygenase. These results suggest the difference of the structures of the active sites among these enzymes from various sources.  相似文献   

13.
Carbonmonoxy indoleamine 2,3-dioxygenase from rabbit small intestine exhibited two CO stretch bands at 1953 and 1933 cm-1 with half-band widths (delta v 1/2) of both approximately 15 cm-1. Upon addition of an excess amount of L-tryptophan, the substrate, the spectrum changed into that with an intense single band at 1902 cm-1 with the delta v 1/2 of 15 cm-1. Carbonmonoxy L-tryptophan 2,3-dioxygenase of Pseudomonas acidovorans in the absence of L-tryptophan showed a fused CO stretch band which consists of two components at 1965 and 1958 cm-1 (delta v 1/2 for the fused band; 25 cm-1), which was converted into a sharp single band at 1968 cm-1 (delta v 1/2; 10 cm-1) upon addition of excess L-tryptophan. On the other hand, CO complex of rat liver L-tryptophan 2,3-dioxygenase in the absence of L-tryptophan gave a spectrum with a poorly defined peak around 1961 cm-1. By the addition of L-tryptophan, the spectrum changed into that with two distinct bands at 1972 and 1920 cm-1 (delta v 1/2; 6 and 13 cm-1, respectively). These spectra were insensitive to pH in a range where the enzymes were not denatured (neutral to near pH 9). The infrared spectra of the carbonmonoxy enzymes were also affected by the addition of certain effectors such as skatole and alpha-methyl-DL-tryptophan, which facilitate the binding of L-tryptophan to the catalytic site of intestinal and Pseudomonas enzymes, respectively. However, the changes were of different types from those by the saturating amount of L-tryptophan. Possible mechanisms for these phenomena are discussed in relation to the structure of the heme-CO complex in these heme-containing dioxygenases.  相似文献   

14.
The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxygenase (EC 1.13.11.11) 7-8-fold, and the flux through the kynurenine pathway 3-4-fold, in cells from both control and adrenalectomized rats. Increases in flux through kynureninase (EC 3.7.1.3) and to acetyl-CoA can be explained in terms of increased substrate supply from tryptophan 2,3-dioxygenase. The metabolism of tryptophan was increased 3-fold in liver cells isolated from acutely (3 days) diabetic rats, with a 7-8-fold increase in the maximal activity of tryptophan 2,3-dioxygenase. The oxidation of tryptophan to CO2 and metabolites of the glutarate pathway increased 4-5-fold, consistent with an increase in picolinate carboxylase (EC 4.1.1.45) activity. Liver cells isolated from chronic (10 days) diabetic rats metabolized tryptophan at rates comparable with those of cells from acutely diabetic rats, but with a 50% decrease in the activity of tryptophan 2,3-dioxygenase. The proportion of flux from tryptophan 2,3-dioxygenase to acetyl-CoA, however, was increased by 50%; this was indicative of further increases in the activity of picolinate carboxylase. Administration of insulin partially reversed the effects of chronic diabetes on the activity of tryptophan 2,3-dioxygenase and flux through the kynurenine pathway, but had no effect on the increased activity of picolinate carboxylase. The role of tryptophan 2,3-dioxygenase in regulating the blood tryptophan concentration is discussed with reference to its sensitivity to the above conditions.  相似文献   

15.
The presence of indolylamine 2,3-dioxygenase was examined in human subjects by determining its activity with L-tryptophan as substrate. Enzyme activity was detected in various tissues, and was relatively high in the lung, small intestine and placenta. Human indolylamine 2,3-dioxygenase, partially purified from the placenta, had an Mr of about 40 000 by gel filtration and exhibited a single pI of 6.9. The human enzyme required a reducing system, ascorbic acid and Methylene Blue, for maximal activity and was able to oxidize D-tryptophan, 5-hydroxy-L-tryptophan as well as L-tryptophan, but kinetic studies indicated that the best substrate of the enzyme was L-tryptophan.  相似文献   

16.
The liver cytosolic enzyme tryptophan 2,3-dioxygenase (TDO) catalyzes the oxidation of L-tryptophan to formylkynurenine and controls the physiological flux of tryptophan into both the serotonergic and kynureninic pathways. This hemoprotein enzyme is composed of four noncovalently bound subunits of equivalent mass and contains two heme moieties per molecule. Electron paramagnetic resonance analyses have indicated that a histidyl nitrogen is involved in heme ligation [Henry et al., (1976) J. Biol. Chem. 251, 1578], but the identity of the His residue(s) is unknown. In an attempt to characterize the active site of the enzyme we have substituted each of the 12 His residues in the rat TDO subunit with Ala, to determine their relative importance in heme binding. Sequence alignment of the rat liver protein with that of known or putative TDO sequences from other organisms reveals that four of the His residues are conserved in eukaryotes, two of which are also conserved in prokaryotes. Our findings indicate that replacement of the evolutionarily conserved His 76 and 328 residues resulted in a dramatic reduction of TDO activity, whereas that of the eukaryotically conserved His70 resulted in a significant reduction relative to that of the wild-type enzyme. On the other hand, replacement of the other eukaryotically conserved His273 residue, while affecting the relative expression of the enzyme, had little effect on its specific activity. Size-exclusion analyses revealed that the His76Ala and His328Ala mutants retained little or no heme, suggesting that these may be key residues in ligating the prosthetic heme moieties. Whether these His residues are both provided by the same TDO subunit or a different TDO subunit remains to be determined.  相似文献   

17.
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate.  相似文献   

18.
Ferrous L-tryptophan-2,3-dioxygenase reacts with nitric oxide both in the presence and in the absence of L-tryptophan. Electron paramagnetic resonance studies suggest that the proximal ligand of the heme is a nitrogen atom, probably from an histidyl residue. The interaction of the protein with substrate changes both the symmetry of the paramagnetic center and the mode of interaction of the iron atom with its two axial ligands, NO and the proximal nitrogen atom. Optical absorption and EPR spectra suggest that the affinity of NO for tryptophan dioxygenase increases in the order: tryptophan dioxygenase, tryptophan dioxygenase + alpha-methyltryptophan, tryptophan diogenase " 5-hydroxytryptophan, tryptophan dioxygenase + L-tryptophan. A possible correlation between the number of superhyperfine lines in the EPR spectrum and the affinity of the enzyme for NO is discussed.  相似文献   

19.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase   总被引:16,自引:0,他引:16  
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in the liver and kidney of the kynurenine-metabolizing enzymes suggested that kynurenine thus formed was transported by the bloodstream to those two organs to be metabolized. In fact, the plasma kynurenine level increased in parallel with the induction of the dioxygenase by lipopolysaccharide, and kinetic analysis indicated that at the maximal induction of the enzyme there was a 3-fold increase in the kynurenine production. The major metabolic route of kynurenine was excretion in urine as xanthurenic acid. This increase in the kynurenine production was not explained by L-tryptophan 2,3-dioxygenase in the liver, because during the induction of indoleamine 2,3-dioxygenase, the hepatic enzyme level was substantially suppressed. These findings indicated that indoleamine 2,3-dioxygenase actively oxidized tryptophan in mice and that its induction resulted in an increase in tryptophan degradation.  相似文献   

20.
In order to test the hypothesis (Munn, Zhou, Attwood, Bondarev, Conway, Marshall, Brown, Mellor, Science 281 (1998) 1191-1193) that localized placental tryptophan catabolism prevents immune rejection of the mammalian fetus, the cellular localization and characteristics of human placental indoleamine 2,3-dioxygenase (EC 1.13.11.42) were studied. The localization of indoleamine 2, 3-dioxygenase activity was determined quantitatively using cell fractionation by differential and discontinuous sucrose gradient centrifugation. Enzyme activity was looked for in isolated brush border microvillous plasma membranes of placental syncytiotrophoblast. We found that this membrane preparation (which showed a 32.4-fold purification from the starting homogenate with reference to the activity of a membrane marker enzyme, alkaline phosphatase (EC 3.1.3.1)) was strongly negatively enriched with indoleamine 2,3-dioxygenase (which showed a one twenty-fifth decrease in its specific activity). Placental indoleamine 2, 3-dioxygenase is thus not expressed in the maternal facing brush border membrane of syncytiotrophoblast. 1-Methyl-DL-tryptophan which was used by Munn et al. as a key experimental tool for inhibiting indoleamine 2,3-dioxygenase in the murine model showed a competitive inhibition of human placental indoleamine 2,3-dioxygenase with L-tryptophan. The hypothesis, based on experiments performed in mouse, may therefore be applicable to avoidance of immune rejection of the fetus in human pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号