首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine cyclodeaminase activity in Rhizobium meliloti   总被引:1,自引:0,他引:1  
Abstract Deamination of L-ornithine to L-proline by ornithine cyclodeaminase is an unusual enzyme reaction that has been shown to occur in only a few bacteria. Rhizobium meliloti strains GR4, 2011 and 41 are able to use ornithine as the sole carbon and nitrogen source. The main pathway of ornithine utilization in strain GR4 depends on ornithine cyclodeaminase activity. In addition, this enzymatic activity has been found to be dependent on NAD+ and L-arginine similar to Agrobacterium ornithine cyclodeaminases. The ornithine cyclodeaminase activity is also expressed in R. meliloti strains 2011 and 41 growing with L-ornithine.  相似文献   

2.
Pseudomonas putida mutants impaired in the utilization of arginine are affected in either the arginine succinyltransferase pathway, the arginine oxidase route, or both. However, mutants affected in one of the pathways still grow on arginine as sole carbon source. Analysis of the products excreted by both wild-type and mutant strains suggests that arginine is mainly channelled by the oxidase route. Proline non-utilizing mutants are also affected in ornithine utilization, confirming the role of proline as an intermediate in ornithine catabolism. Mutants affected in ornithine cyclodeaminase activity still grow on proline and become unable to use ornithine. Both proline non-utilizing mutants and ornithine-cyclodeaminase-minus mutants are unable to use citrulline. These results, together with induction of ornithine cyclodeaminase when wild-type P. putida is grown on citrulline, indicate that utilization of citrulline as a carbon source proceeds via proline with ornithine as an intermediate. Thus in P. putida, the aerobic catabolism of arginine on the one hand and citrulline and ornithine on the other proceed by quite different metabolic segments.  相似文献   

3.
Agrobacterium nopaline Ti plasmids code for three enzymes of nopaline [N2-(1,3-dicarboxypropyl)-L-arginine] degradation: nopaline oxidase, arginase, and ornithine cyclodeaminase. We describe the DNA sequence of the arginase gene, a comparison of the deduced protein sequence with eucaryotic arginases, and properties of the procaryotic enzyme. The results show that the agrobacterial arginase is related with arginases from yeast, rat liver, and human liver (28-33% identity). The Ti plasmid enzyme revealed several properties which appear common to all arginases, but it does not utilize L-canavanine as substrate, and its Mn2+ requirement is not satisfied by Fe2+, Co2+, or Ni2+. The properties of arginase and ornithine cyclodeaminase are discussed as part of the mechanisms which avoid depletion of L-arginine and L-ornithine pools for biosynthetic reactions during catabolic utilization of nopaline.  相似文献   

4.
The partial amino acid sequence including the N- and C-terminal portions of tauropine dehydrogenase (EC 1.5.1.23) from the marine sponge Halichondria japonica was determined by enzymatic cleavages followed by peptide sequencing. This information was used to design degenerate primers for amplification of cDNA encoding the tauropine dehydrogenase. The cDNA included 1231 nucleotides with an open reading frame of 1002 nucleotides that encodes a protein of 334 amino acid residues. From the peptide and nucleotide sequencing, the mature tauropine dehydrogenase was estimated to consist of 333 amino acid residues with an acetylated N-terminal serine residue and no intrachain disulfide bonds. The primary structure of the H. japonica enzyme showed apparent similarity with a homolog of ornithine cyclodeaminase from Rhizobium meliloti and other proteins of the ornithine cyclodeaminase/mu-crystallin family, but it showed no significant similarity with the known sequences of octopine dehydrogenases and tauropine dehydrogenases from marine invertebrates. These findings indicate that opine dehydrogenases in marine invertebrates are not all homologous.  相似文献   

5.
The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences.  相似文献   

6.
Brucella abortus arginase and ornithine cyclodeaminase genes have been cloned and sequenced. These gene sequences are located in the same operon and occur in the same order as the homologous genes in Agrobacterium tumefaciens Ti C58 plasmid. The nucleotide sequences of the two genes have 72% and 65% identity to the respective Ti plasmid genes. Both genes are present in a single copy, and expression of arginase is regulated in response to arginine.  相似文献   

7.
Nopaline, an abundant opine in plant cells transformed with nopaline-type Ti plasmids, is catabolized in Agrobacterium by three Ti-plasmid-coded steps via arginine and ornithine to proline. The last enzyme, ornithine cyclodeaminase (OCD), converts ornithine directly into proline with release of ammonia. We describe the DNA sequence of the ocd gene from Ti plasmid C58, antiserum against an OCD fusion protein overexpressed in Escherichia coli, induction and identification of the gene product in Agrobacterium and enzymatic properties of the protein. The DNA sequence suggests a soluble protein with a stretch of some homology with ornithine carbamoyltransferases from other bacteria. OCD activity is subject to substrate inhibition, is stimulated by NAD+ (presumably acting as a catalytic cofactor) and is regulated by L-arginine which has pronounced effects on the optima for pH and temperature and on the Km for ornithine. The regulation of OCD activity by L-arginine is discussed as part of the mechanisms which integrate the pathway of Ti-plasmid-coded opine utilization with general metabolism in Agrobacterium.  相似文献   

8.
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and S?ll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.  相似文献   

9.
The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.  相似文献   

10.
The hyperthermophilic archaeon Methanococcus jannaschii uses several non-canonical enzymes to catalyze conserved reactions in glycolysis and gluconeogenesis. A highly diverged gene from that organism has been proposed to function as a phosphoglycerate mutase. Like the canonical cofactor-independent phosphoglycerate mutase and other members of the binuclear metalloenzyme superfamily, this M. jannaschii protein has conserved nucleophilic serine and metal-binding residues. Yet the substrate-binding residues are not conserved. We show that the genes at M. jannaschii loci MJ0010 and MJ1612 encode thermostable enzymes with phosphoglycerate mutase activity. Phylogenetic analyses suggest that this gene family arose before the divergence of the archaeal lineage.  相似文献   

11.
The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.  相似文献   

12.
Plant tumors induced by Agrobacterium tumefaciens synthesize a group of substances (opines) which can serve as sole source of carbon and nitrogen for the bacteria. We investigate Ti-plasmid-coded genes and enzymes involved in catabolism of the opine N2-(1,3-dicarboxypropyl)-L-arginine (nopaline) with a novel approach: expression and mapping of protein-coding regions in Escherichia coli minicells, followed by identification of enzyme functions in the heterologous E. coli background. The results show that a specific part of the nopaline catabolism (Noc) region of Ti plasmid C58 is packed with closely spaced protein-coding regions which can be expressed into polypeptides of distinct sizes in E. coli. We identify and map three enzyme activities: nopaline oxidase, arginase and ornithine cyclodeaminase, an unusual protein converting ornithine directly into proline. Nopaline oxidase requires two different Noc-gene-encoded proteins for function and the latter two enzymes are new discoveries in the Noc region. These three enzyme activities together constitute a catabolic pathway leading from nopaline through arginine and ornithine to proline.  相似文献   

13.
Whereas eubacterial and eukaryotic riboflavin synthases form homotrimers, archaeal riboflavin synthases from Methanocaldococcus jannaschii and Methanothermobacter thermoautrophicus are homopentamers with sequence similarity to the 6,7-dimethyl-8-ribityllumazine synthase catalyzing the penultimate step in riboflavin biosynthesis. Recently it could be shown that the complex dismutation reaction catalyzed by the pentameric M. jannaschii riboflavin synthase generates riboflavin with the same regiochemistry as observed for trimeric riboflavin synthases. Here we present crystal structures of the pentameric riboflavin synthase from M. jannaschii and its complex with the substrate analog inhibitor, 6,7-dioxo-8-ribityllumazine. The complex structure shows five active sites located between adjacent monomers of the pentamer. Each active site can accommodate two substrate analog molecules in anti-parallel orientation. The topology of the two bound ligands at the active site is well in line with the known stereochemistry of a pentacyclic adduct of 6,7-dimethyl-8-ribityllumazine that has been shown to serve as a kinetically competent intermediate. The pentacyclic intermediates of trimeric and pentameric riboflavin synthases are diastereomers.  相似文献   

14.
The products of two adjacent genes in the chromosome of Methanococcus jannaschii are similar to the amino and carboxyl halves of phosphonopyruvate decarboxylase, the enzyme that catalyzes the second step of fosfomycin biosynthesis in Streptomyces wedmorensis. These two M. jannaschii genes were recombinantly expressed in Escherichia coli, and their gene products were tested for the ability to catalyze the decarboxylation of a series of alpha-ketoacids. Both subunits are required to form an alpha(6)beta(6) dodecamer that specifically catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde. This transformation is the fourth step in the biosynthesis of coenzyme M, a crucial cofactor in methanogenesis and aliphatic alkene metabolism. The M. jannaschii sulfopyruvate decarboxylase was found to be inactivated by oxygen and reactivated by reduction with dithionite. The two subunits, designated ComD and ComE, comprise the first enzyme for the biosynthesis of coenzyme M to be described.  相似文献   

15.
16.
A gene coding for a protein homologous to the flap endonuclease-1 (FEN-1) was cloned from Methanococcus jannaschii, overexpressed, purified and characterized. The gene product from M. jannaschii shows 5' endo-/exonuclease and 5' pseudo-Y-endonuclease activities as observed in the FEN-1 in eukaryotes. In addition, Methanococcus jannaschii FEN-1 functions effectively at high concentrations of salt, unlike eukaryotic FEN-1. We have crystallized Methanococcus jannaschii FEN-1 and analyzed its preliminary character. The crystal belongs to the space group of P2(1) with unit cell dimensions of a = 58.93 A, b = 42.53 A, c = 62.62 A and beta = 92.250. A complete data set has been collected at 2.0 A resolution using a frozen crystal.  相似文献   

17.
18.
The small size of the archaebacterial Methanococcus jannaschii tyrosyl-tRNA synthetase may give insights into the historical development of tRNAs and tRNA synthetases. The L-shaped tRNA has two major arms-the acceptor.TpsiC minihelix with the amino acid attachment site and the anticodon-containing arm. The structural organization of the tRNA synthetases parallels that of tRNAs. The more ancient synthetase domain contains the active site and insertions that interact with the minihelix portion of the tRNA. A second, presumably more recent, domain interacts with the anticodon-containing section of tRNA. The small size of the M. jannaschii enzyme is due to the absence of most of the second domain, including a segment thought to bind to the anticodon. Consistent with the absence of an anticodon-binding motif, a mutation of the central base of the anticodon had a relatively small effect on the aminoacylation efficiency of the M. jannaschii enzyme. In contrast, others showed earlier that the same mutation severely reduced charging by a normal-sized bacterial enzyme that has the aforementioned anticodon-binding motif. However, the M. jannaschii enzyme has a peptide insertion into its catalytic domain. This insertion is shared with all other tyrosyl-tRNA synthetases and is needed for a critical minihelix interaction. We show that the M. jannaschii enzyme is active on minihelix substrates over a wide temperature range and has preserved the same peptide-dependent minihelix specificity seen in other tyrosine enzymes. These findings are consistent with the concept that anticodon interactions of tRNA synthetases were later adaptations to the emerging synthetase-tRNA complex that was originally framed around the minihelix.  相似文献   

19.
The complete genomic sequencing of Methanococcus jannaschii cannot identify the gene for the cysteine-specific member of aminoacyl-tRNA synthetases. However, we show here that enzyme activity is present in the cell lysate of M. jannaschii. The demonstration of this activity suggests a direct pathway for the synthesis of cysteinyl-tRNA(Cys) during protein synthesis.  相似文献   

20.
Arginine participates widely in metabolic processes. The heterocyst‐forming cyanobacterium Anabaena catabolizes arginine to produce proline and glutamate, with concomitant release of ammonium, as major products. Analysis of mutant Anabaena strains showed that this catabolic pathway is the product of two genes, agrE (alr4995) and putA (alr0540). The predicted PutA protein is a conventional, bifunctional proline oxidase that produces glutamate from proline. In contrast, AgrE is a hitherto unrecognized enzyme that contains both an N‐terminal α/β propeller domain and a unique C‐terminal domain of previously unidentified function. In vitro analysis of the proteins expressed in Escherichia coli or Anabaena showed arginine dihydrolase activity of the N‐terminal domain and ornithine cyclodeaminase activity of the C‐terminal domain, overall producing proline from arginine. In the diazotrophic filaments of Anabaena, β‐aspartyl‐arginine dipeptide is transferred from the heterocysts to the vegetative cells, where it is cleaved producing aspartate and arginine. Both agrE and putA were found to be expressed at higher levels in vegetative cells than in heterocysts, implying that arginine is catabolized by the AgrEPutA pathway mainly in the vegetative cells. Expression in Anabaena of a homolog of the C‐terminal domain of AgrE obtained from Methanococcus maripaludis enabled us to identify an archaeal ornithine cyclodeaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号