共查询到20条相似文献,搜索用时 15 毫秒
1.
l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studied so far mainly using immunocytochemistry. In the present study non-radioactive in situ hybridisation using complementary RNA probes was applied in order to identify the cell types of rat retina and optic nerve expressing generic GLT1, GLT1 variant (GLT1v or GLT1B), GLAST and EAAC1. The results were compared with immunocytochemical data achieved using affinity-purified antibodies against transporter peptides. In the immunohistochemical studies the human retina was included. The study showed that in the rat retina GLT1v and EAAC1 were coexpressed in various cell types, i.e. photoreceptor, bipolar, horizontal, amacrine, ganglion and Müller cells, whereas GLAST was only detected in Müller cells and astrocytes. In the rat optic nerve GLT1v and EAAC1 were preferentially expressed in oligodendrocytes, whereas GLAST was revealed to be present mainly in astrocytes. Generic GLT1 could not be detected in the retina or optic nerve. The cellular distribution of glutamate transporters (only immunocytochemistry) in the human retina was very similar to that of the rat retina. Remarkable results of our studies were that generic GLT1 was not detectable in the rat (and human) retina and that GLT1v and EAAC1 were demonstrable in most cell types of the retina (including photoreceptor cells and their terminals). 相似文献
2.
Ji YF Xu SM Zhu J Wang XX Shen Y 《Biochemical and biophysical research communications》2011,(4):3079-696
The astroglial cell-specific glutamate transporter subtype 2 (excitatory amino acid transporter 2, GLT1) plays an important role in excitotoxicity that develops after damage to the central nervous system (CNS) is incurred. Both the protein kinase C signaling pathway and the epidermal growth factor (EGF) pathway have been suggested to participate in the modulation of GLT1, but the modulatory mechanisms of GLT1 expression are not fully understood. In the present study, we aimed to evaluate the effects of insulin on GLT1 expression. We found that short-term stimulation of insulin led to the upregulation of both total and surface expressions of GLT1. Akt phosphorylation increased after insulin treatment, and triciribine, the inhibitor of Akt phosphorylation, significantly inhibited the effects of insulin. We also found that the upregulation of GLT1 expression correlated with increased kappa B motif-binding phosphoprotein (KBBP) and GLT1 mRNA levels. Our results suggest that insulin may modulate the expression of astrocytic GLT1, which might play a role in reactive astrocytes after CNS injuries. 相似文献
3.
Glial soluble factors regulate the activity and expression of the neuronal glutamate transporter EAAC1: implication of cholesterol 总被引:7,自引:0,他引:7
Canolle B Masmejean F Melon C Nieoullon A Pisano P Lortet S 《Journal of neurochemistry》2004,88(6):1521-1532
A co-ordinated regulation between neurons and astrocytes is essential for the control of extracellular glutamate concentration. Here, we have investigated the influence of astrocytes and glia-derived cholesterol on the regulation of glutamate transport in primary neuronal cultures from rat embryonic cortices. Glutamate uptake rate and expression of the neuronal glutamate transporter EAAC1 were low when neurons were grown without astrocytes and neurons were unable to clear extracellular glutamate. Treatment of the neuronal cultures with glial conditioned medium (GCM) increased glutamate uptake Vmax, EAAC1 expression and restored the capacity of neurons to eliminate extracellular glutamate. Thus, astrocytes up-regulate the activity and expression of EAAC1 in neurons. We further showed that cholesterol, present in GCM, increased glutamate uptake activity when added directly to neurons and had no effect on glutamate transporter expression. Furthermore, part of the GCM-induced effect on glutamate transport activity was lost when cholesterol was removed from GCM (low cholesterol-GCM) and was restored when cholesterol was added to low cholesterol-GCM. This demonstrates that glia-derived cholesterol regulates glutamate transport activity. With these experiments, we provide new evidences for neuronal glutamate transport regulation by astrocytes and identified cholesterol as one of the factors implicated in this regulation. 相似文献
4.
Meabon JS Lee A Meeker KD Bekris LM Fujimura RK Yu CE Watson GS Pow DV Sweet IR Cook DG 《The journal of histochemistry and cytochemistry》2012,60(2):139-151
The glutamate uptake transporter GLT-1 is best understood for its critical role in preventing brain seizures. Increasing evidence argues that GLT-1 also modulates, and is modulated by, metabolic processes that influence glucose homeostasis. To investigate further the potential role of GLT-1 in these regards, the authors examined GLT-1 expression in pancreas and found that mature multimeric GLT-1 protein is stably expressed in the pancreas of wild-type, but not GLT-1 knockout, mice. There are three primary functional carboxyl-terminus GLT-1 splice variants, called GLT-1a, b, and c. Brain and liver express all three variants; however, the pancreas expresses GLT-1a and GLT-1b but not GLT-1c. Quantitative real time-PCR further revealed that while GLT-1a is the predominant GLT-1 splice variant in brain and liver, GLT-1b is the most abundant splice variant expressed in pancreas. Confocal microscopy and immunohistochemistry showed that GLT-1a and GLT-1b are expressed in both islet β- and α-cells. GLT-1b was also expressed in exocrine ductal domains. Finally, glutamine synthetase was coexpressed with GLT-1 in islets, which suggests that, as with liver and brain, one possible role of GLT-1 in the pancreas is to support glutamine synthesis. 相似文献
5.
Liévens JC Salin P Had-Aissouni L Mahy N Kerkerian-Le Goff L 《Journal of neurochemistry》2000,74(3):909-919
This study compared the effects of the disruption of the two main presumably glutamatergic striatal inputs, the corticostriatal and thalamostriatal pathways, on GLT1 expression in the rat striatum, using in situ hybridization and immunohistochemistry. Unilateral ibotenate-induced thalamic lesion produced no significant changes in striatal GLT1 mRNA labeling and immunostaining as assessed at 5 and 12 days postlesion. In contrast, significant increases in both parameters were measured after bilateral cortical lesion by superficial thermocoagulation. GLT1 mRNA levels increased predominantly in the dorsolateral part of the striatum; there, the increases were significant at 5 (+84%), 12 (+101%), and 21 (+45%) but not at 35 days postlesion. GLT1 immunostaining increased significantly and homogeneously by 17-26% at 12 and 21 days postlesion. The increase in GLT1 expression at 12 days postlesion was further confirmed by western blot analysis; in contrast, a 36% decrease in glutamate uptake activity was measured at the same time point. These data indicate that striatal GLT1 expression depends on corticostriatal but not thalamostriatal innervation. Comparison of our results with previous data showing that cortical lesion by aspiration downregulates striatal GLT1 expression further suggests that differential changes in GLT1 expression, and thus presumably in glial cell function, may occur in the target striatum depending on the way the cortical neurons degenerate. 相似文献
6.
Neuronal Soluble Factors Differentially Regulate the Expression of the GLT1 and GLAST Glutamate Transporters in Cultured Astroglia 总被引:5,自引:5,他引:5
Georgi Gegelashvili Niels Christian Danbolt Arne Schousboe 《Journal of neurochemistry》1997,69(6):2612-2615
Abstract: The glutamate transporters in the plasma membranes of neural cells secure termination of the glutamatergic synaptic transmission and keep the glutamate levels below toxic concentrations. Astrocytes express two types of glutamate transporters, GLAST (EAAT1) and GLT1 (EAAT2). GLT1 predominates quantitatively and is responsible for most of the glutamate uptake activity in the juvenile and adult brain. However, GLT1 is severely down-regulated in amyotrophic lateral sclerosis, a progressive neurodegenerative disease. Furthermore, selective loss of this transporter occurs in cultured astroglia. Expression of GLAST, but not of GLT1, seems to be regulated via the glutamate receptor signalling. The present study was undertaken to examine whether neuronal factors, other than glutamate, influence the expression of astroglial glutamate transporters. The expression of GLT1 and GLAST was examined in primary cultures of cerebellar granule neurons, cortical neurons, and astrocytes under different experimental conditions, including those that mimic neuron-astrocyte interactions. Pure astroglial cultures expressed only GLAST, whereas astrocytes grown in the presence of neurons expressed both GLAST (at increased levels) and GLT1. The induction of GLT1 protein and its mRNA was reproduced in pure cortical astroglial cultures supplemented with conditioned media from cortical neuronal cultures or from mixed neuron-glia cultures. This treatment did not change the levels of GLAST. These results suggest that soluble neuronal factors differentially regulate the expression of GLT1 and GLAST in cultured astroglia. Further elucidation of the molecular nature of the secreted neuronal factors and corresponding signalling pathways regulating the expression of the astroglial glutamate transporters in vitro may reveal mechanisms important for the understanding and treatment of neurological diseases. 相似文献
7.
8.
A network model of simplified striatal principal neurons with mutual inhibition was used to investigate possible interactions between cortical glutamatergic and nigral dopaminergic afferents in the neostriatum. Glutamatergic and dopaminergic inputs were represented by an excitatory synaptic conductance and a slow membrane potassium conductance, respectively. Neuronal activity in the model was characterized by episodes of increased action potential firing rates of variable duration and frequency. Autocorrelation histograms constructed from the action potential activity of striatal model neurons showed that reducing peak excitatory conductance had the effect of increasing interspike intervals. On the other hand, the maximum value of the dopamine-sensitive potassium conductance was inversely related to the duration of firing episodes and the maximal firing rates. A smaller potassium conductance restored normal firing rates in the most active neurons at the expense of a larger proportion of neurons showing reduced activity. Thus, a homogeneous network with mutual inhibition can produce equally complex dynamics as have been proposed to occur in a striatal network with two neuron populations that are oppositely regulated by dopamine. Even without mutual inhibition it appears that increased dopamine concentrations could partially compensate for the effects of reduced glutamatergic input in individual neurons. 相似文献
9.
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia. 相似文献
10.
Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain 总被引:8,自引:0,他引:8
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death. 相似文献
11.
12.
Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra 总被引:2,自引:0,他引:2
Salvatore MF Zhang JL Large DM Wilson PE Gash CR Thomas TC Haycock JW Bing G Stanford JA Gash DM Gerhardt GA 《Journal of neurochemistry》2004,90(1):245-254
Glial cell line-derived neurotrophic factor (GDNF) improves motor dysfunction associated with aging in rats and non-human primates, in animal models of Parkinson's disease, and may improve motoric function in patients with advanced Parkinson's disease. These improvements are associated with increased dopamine function in the nigrostriatal system, but the molecular events associated with this increase are unknown. In these studies, 100 micro g of GDNF was injected into the striatum of normal aged (24-month-old) male Fischer 344 rats. The protein levels and phosphorylation of TH, ERK1/2, and related proteins were determined by blot-immunolabeling of striatum and substantia nigra harvested 30 days after injection. In GDNF-treated rats, TH phosphorylation at Ser31 increased approximately 40% in striatum and approximately 250% in the substantia nigra. In the substantia nigra, there was a significant increase in ERK1 phosphorylation. In striatum, there was a significant increase in ERK2 phosphorylation. Microdialysis studies in striatum showed that both amphetamine- and potassium-evoked dopamine release in GDNF recipients were significantly increased. These data show that GDNF-induced increases in dopamine function are associated with a sustained increase in TH phosphorylation at Ser31, which is greatest in the substantia nigra and maintained for at least one month following a single striatal administration of GDNF. These findings, taken from the nigrostriatal system of normal aged rats, may help explain the long lasting effects of GDNF on dopamine function and prior studies supporting that a major effect of GDNF involves its effects on dopamine storage and somatodendritic release of dopamine in the substantia nigra. 相似文献
13.
Ren YR Nishida Y Yoshimi K Yasuda T Jishage K Uchihara T Yokota T Mizuno Y Mochizuki H 《Journal of neurochemistry》2006,98(6):1810-1816
Oxidative stress is involved in the degeneration of the nigrostriatal dopaminergic system in Parkinson's disease (PD). Vitamin E (alpha-tocopherol) is a potent antioxidant in the cell membrane that can trap free radicals and prohibit lipid peroxidation. The retention and secretion of vitamin E are regulated by alpha-tocopherol transfer protein (TTP) in the brain and liver. Dysfunction of TTP results in systemic deficiency of vitamin E in humans and mice, and increased oxidative stress in mouse brain. In this study, we investigated the effect of vitamin E deficiency in PD development by generating an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD using TTP knockout (TTP-/-) mice. Vitamin E concentration in the brains of TTP+/- mice was half that in TTP+/+ mice, and in TTP-/- mice, was undetectable. MPTP treatment tended to decrease striatal dopamine, but the effect was comparable and not significant in any of the three genotypes. Furthermore, the extent of loss of dopaminergic cell bodies in the substantia nigra did not differ among the groups. One the other hand, oral administration of vitamin E resulted in the partial protection of striatal dopaminergic terminals against MPTP toxicity. Our results suggest that vitamin E does not play a major protective role in MPTP-induced nigrostriatal dopaminergic neurodegeneration in the brain. 相似文献
14.
Brigitte Potier Jean‐Marie Billard Sylvain Rivière Pierre‐Marie Sinet Isabelle Denis Gaelle Champeil‐Potokar Barbara Grintal Anne Jouvenceau Melanie Kollen Patrick Dutar 《Aging cell》2010,9(5):722-735
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network. 相似文献
15.
Nigrostriatal dopaminergic denervation is associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. The excitatory neurotransmitter glutamate mediates neural signaling at crucial points of this circuitry, and glutamate receptors are differentially distributed in the basal ganglia. Available evidence suggests that the glutamatergic corticostriatal and subthalamofugal pathways become overactive after nigrostriatal dopamine depletion. In this study, we have analyzed the regulation of the GluR1 subunit of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in the basal ganglia of primates following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine denervation. The dopamine denervation resulted in distinct alterations in GluR1 distribution: (1) GluR1 protein expression was markedly increased in caudate and putamen, and this was most pronounced in the striosomes; (2) GluR1 protein was altered minimally in subthalamic nucleus; (3) expression of GluR1 was down-regulated in the globus pallidus by 63% and in the substantia nigra by 57%. The down-regulation of GluR1 expression in the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata, may be a compensation for the overactive glutamatergic input from subthalamic nucleus, which arises after striatal dopamine denervation. Our results indicate that the glutamatergic system undergoes regulatory changes in response to altered basal ganglia activity in a primate model of Parkinson's disease. Targeted manipulation of the glutamatergic system may be a viable approach to the symptomatic treatment of Parkinson's disease. 相似文献
16.
岗田酸诱导大鼠脑神经细胞表达谷氨酸转运体EAAT1 总被引:3,自引:0,他引:3
为研究tau蛋白高度磷酸化与谷氨酸转运体功能之间的关系,实验采用免疫组织化学、荧光双标记技术及大鼠额叶皮质定位注射的方法,观察了蛋白磷酸酶抑制剂岗田酸(okadaic acid,OA)所致神经细胞退化对谷氨酸转运体亚型EAAT1表达的影响。结果如下:(1)在OA注射中心区神经元早期出现胞体固缩、肿胀、核移位,在注射3d时细胞破碎,发生坏死,并有大量炎性细胞浸润等病理现象;边周区细胞呈AT8(微管相关蛋白tau磷酸化指标)免疫阳性反应;(2)OA首先诱导神经细胞突起远端tau蛋白磷酸化,并逐渐向胞体发展,形成营养不良的神经细胞突起和神经纤维缠结样病理改变;(3)AT8免疫阳性反应脑区的神经细胞高表达谷氨酸转运体EAAT1,在12h阳性表达细胞数显著增多(P<0.01),1d时达峰值(P<0.001),3d时明显减少。在OA作用下EAAT1表达于星形胶质细胞和神经元。结果提示,OA致微管相关蛋白tau高度磷酸化时可诱导该区星形胶质细胞和神经元高表达谷氨酸转体EAAT1。EAAT1高表达的病理生理意义有待进一步的阐明。 相似文献
17.
Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina 总被引:1,自引:0,他引:1
Excitatory amino acid transporter 5 (EAAT5) is an unusual glutamate transporter that is expressed in the retina, where it is localised to two populations of glutamatergic neurons, namely the bipolar neurons and photoreceptors. EAAT5 exhibits two distinct properties, acting both as a slow glutamate transporter and as a glutamate-gated inhibitory receptor. The latter property is attributable to a co-associated chloride conductance. EAAT5 has previously been thought to exist only as a full-length form. We now demonstrate by PCR cloning and sequencing, the presence of five novel splice variant forms of EAAT5 which skip either partial or complete exons in the rat retina. Furthermore, we demonstrate that each of these variants is expressed at the protein level as assessed by Western blotting using splice-specific antibodies that we have generated. We conclude that EAAT5 exists in multiple spliced forms, and propose, based upon retention or absence of key structural features, that these variant forms may potentially exhibit distinct properties relative to the originally described form of EAAT5. 相似文献
18.
19.
Silencing of CA1 mRNA in tumour cells does not change the gene expression of the extracellular matrix proteins 下载免费PDF全文
Radivojka Vulic Silvia Tyciakova Maria Dubrovcakova Ludovit Skultety Jan Lakota 《Journal of cellular and molecular medicine》2018,22(1):695-699
We report the silencing of CA1 mRNA in PC3 and MDA cells. The levels of mRNA coding CA1 protein in the knock‐down mRNA (CA1 siRNA) cells have been measured by RT‐PCR and were approximately 5% (PC3) and 20% (MDA‐MB‐231), respectively, of the level of control (Mock siRNA) used during silencing. In PC3 and MDA‐MB‐231 cells, the mRNAs for COL1A1 and COL4A4 were up‐regulated. The mRNAs for CTHRC1, LAMC2, and WNT7B were not changed when compared to the control. The morphology of the cells during the treatments remained the same. On the Western blots, the lysate from the silenced cells showed lower levels of CA I as well. 相似文献
20.
Nogami H Ogasawara K Mimura Y Mogi K Shutoh F Hisano S 《Journal of neurochemistry》2006,99(1):142-153
Three distinct subtypes of vesicular glutamate transporters (VGLUTs) have been identified to date that are expressed basically in a cell type-specific manner. We have found a splice variant of VGLUT1 mRNA that is expressed almost exclusively in photosensitive tissues, i.e. the retina and the pineal gland. The variant mRNA, termed VGLUT1v, contains an additional 75 base pair sequence derived from part of a second intron (designated as exon IIa) between exons 2 and 3. The variant accounted for approximately 70% and 25%of VGLUT1 mRNA in the adult retina and pineal gland, respectively. The expression of VGLUT1v was developmentally regulated in both tissues. Organ culture showed that expression of the variant in the retina increased in association with the development of rod cells, suggesting that VGLUT1v is expressed in rod cells. In situ hybridization with variant-specific probes showed expression of VGLUT1v in the inner segment layer of photoreceptor cells. On the other hand, variant expression did not parallel the development of rhodopsin-positive cells in the pineal gland. As rod cells and pinealocytes are known to release glutamate continuously at ribbon synapses, it is possible that the variant has some functional advantage over the wild-type transporter in such a specialized manner of glutamate release. 相似文献