首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T S Balganesh  S A Lacks 《Gene》1984,29(1-2):221-230
A new plasmid, pLS101, was constructed for use as a vector for cloning in Streptococcus pneumoniae. This plasmid carries two selectable genes, tet and malM, each of which contains two or more restriction sites for cloning. Insertional inactivation of the malM gene allowed direct selection of TcRMal- clones containing recombinant plasmids. Other means of enriching a recipient population for cells containing recombinant plasmids were examined. The effect of removing vector terminal phosphate in attempts to clone heterogeneous DNA fragments, such as those from chromosomal DNA, was to abolish recombinant plasmid establishment altogether, presumably because donor DNA processing during entry into the cell prevented establishment of the hemiligated molecule. However, with homogeneous DNA fragments, such as those from plasmid or viral DNA, vector phosphate removal allowed enrichment for recombinant plasmids. In the cloning of heterogeneous DNA that was homologous to the recipient chromosome (i.e. chromosomal DNA from S. pneumoniae), recovery of recombinant plasmids could be enriched tenfold (relative to the regenerated vector) by the process of chromosomal facilitation of plasmid establishment. This involved an additional passage of the mixed plasmids in which interaction with the chromosome of plasmids containing chromosomal DNA inserts (i.e. recombinant plasmids) increased their frequency of establishment relative to the vector plasmid. An overall strategy for cloning in S. pneumoniae, depending on the nature of the fragment to be cloned, is proposed.  相似文献   

2.
In order to establish a mammalian cell expression system with a minimum of selection steps and a stable expression of microgram amounts of recombinant protein (human tissue-type plasminogen activator mutants and chimeric proteins) per 10(6) cells per day, we investigated Chinese hamster ovary cells and the dihydrofolate reductase-deficient Chinese hamster ovary cell line CHO(dhfr-). The 1tPA expression vector pCMVtPA was cotransfected either with the SV40 enhancer sequence containing dhfr expression vector pMT2 or with the enhancerless dhfr expression vector pAdD26SV(A) into CHO(dhfr-) cells. With both dhfr expression plasmids, selection for dhfr+ transformants followed by single dilution cloning was sufficient to generate cell lines with a production level of up to 4.6 micrograms tPA/10(6) cells.day. This approach is useful if gene amplification procedures are time-consuming and impracticable because of a large number of recombinant proteins. In order to establish CHO cell lines with a tPA expression level as high as that in the case of CHO(dhfr-) cells, repeated dilution cloning is necessary.  相似文献   

3.
Hybrid plasmids containing the mouse dihydrofolate reductase (dhfr) and a human interferon (either IFN-alpha 5 or IFN-gamma) coding sequence under the control of viral promoters were transfected into dhfr- Chinese hamster ovary (CHO) cells. dhfr+ colonies produced IFN at 10-1000 units X ml-1 X day-1. Clones selected in methotrexate had a 20-50-fold increase in the IFN-alpha 5 and dhfr DNA and mRNA content and secreted IFN at 20,000-100,000 units X ml-1 X day-1. SDS-polyacrylamide gel electrophoresis of partially purified 35S-HuIFN-gamma from CHO cells showed a multiple of labeled bands with a mobility corresponding to 22,400 to 23,400 daltons which was absent in the supernatants of non-transformed CHO cells. The higher apparent molecular weight of human IFN-gamma from CHO cells as compared to that of human IFN-gamma from E. coli (about 18,800) suggests that the former was glycosylated.  相似文献   

4.
Wild-type mouse LtAp20 cells were treated with calcium phosphate-precipitated DNA or chromosomes from two highly Methotrexate (MTX)-resistant mouse lymphoma cell lines — EL4/8 and EL4/11. Transfections with purified MTX-resistant DNA produced colonies of LtAp20 cells resistant to 3×10?8M MTX, at about eight times the frequency with which resistant colonies arose in control transfections. DNA transfectants contained multiple copies of the dihydrofolate reductase (dhfr) gene, but other sequences characteristic of the donor DNA could not be detected. Transfections using isolated chromosomes were twice as efficient as those using purified DNA. Unlike DNA transfectants, over 90% of all chromosome transfectants took up large stretches of donor DNA intact and contained DNA sequences characteristic of donor DNA. Of chromosome transfectants selected for resistance to high levels of MTX (1 mM), 70% amplified a unit of DNA which was indistinguishable from that present in the donor cell. The results showed that large fragments of chromosomes (as opposed to purified DNA) can be taken up by recipient cells without detectable alteration to the fine structure of the DNA they contain. The results also support the notion that all amplified units within a MTX-resistant cell have the same overall complex DNA structure.  相似文献   

5.
6.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

7.
K Yoshimura  Y Ikenaka  M Murai  M Tanabe  T Seki  Y Oshima 《Gene》1983,24(2-3):255-263
A cloning vehicle, pFTB91, for the Bacillus subtilis host was constructed with DNA fragments heterologous to the host chromosome. It consists of three DNA fragments: (i) chromosomal DNA of Bacillus amyloliquefaciens which complements the leuA and ilvC mutations in B. subtilis; (ii) a B. amyloliquefaciens plasmid DNA that supplies an autonomously replicating function; and (iii) a HindIII fragment of Staphylococcus aureus plasmid pTP5 that carries gene tetr, conferring the TetR phenotype. It has sufficiently low DNA homology to prevent its integration into the host chromosome in recombination-competent cells of B. subtilis. It is 9.3 kb, and approx. 10 copies are present per chromosome. The SalI and KpnI sites in the ilvC+ and tetr genes, respectively, could be used for selection of recombinant plasmids by insertional inactivation. The plasmid has unique sites for EcoRI, PstI, and XbaI.  相似文献   

8.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37°C. Of recombinant clones that failed to express xylE at 37°C, about 10% expressed the gene when grown at 22°C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

9.
Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results that have been reported for human cells, UV irradiation of transfecting DNA did not stimulate the genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with the UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. However, transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. We conclude that the responses of recipient cells to UV-damaged transfecting plasmids depend both on the type of recipient cell and the characteristics of the genetic sequence used for transfection.  相似文献   

10.
Microcell-mediated chromosome transfer is a useful technique for the study of gene function, gene regulation, gene mapping, and functional cloning in mammalian cells. Complete panels of donor cell lines, each containing a different human chromosome, have been developed. These donor cell lines contain a single human chromosome marked with a dominant selectable gene in a rodent cell background. However, a similar panel does not exist for murine chromosomes. To produce mouse monochromosomal donor hybrids, we have utilized embryonic stem (ES) cells with targeted gene disruptions of known chromosomal location as starting material. ES cells with mutations in aprt, fyn, and myc were utilized to generate monochromosomal hybrids with neomycin phosphotransferase-marked murine Chr 8, 10, or 15 respectively in a hamster or rat background. This same methodology can be used to generate a complete panel of marked mouse chromosomes for somatic cell genetic experimentaion. Received: 28 July 1998 / Accepted: 15 December 1998  相似文献   

11.
Based on a common biological phenomenon - homologous recombination - a novel method was developed by transferring chromosome DNA fragments extracted from multiple donor cells into a host strain. Through this method of transferring DNA fragments, foreign DNA fragments are introduced into one host cell and multiple positive traits from multiple strains may be integrated into the host strain. We first confirmed its feasibility in both prokaryotic and eukaryotic cells by selecting reverse mutants to prototrophy from auxotrophic strains through receiving chromosomal DNA fragments of wild-type parental strains. We then applied this method to Saccharomyces cerevisiae to improve its ethanol and temperature tolerance. We introduced donor chromosome DNA fragments from different S. cerevisiae strains with improvements in ethanol or temperature tolerance into a common strain S. cerevisiae and obtained a strain with much superior ethanol and temperature tolerance. The results showed that the Transferring DNA Fragments method provides a new way for strain breeding.  相似文献   

12.
We used mitotic chromosomes isolated from a human EJ bladder carcinoma cell line for morphological transformation of mouse C127 cells. These chromosome-mediated transformants were analyzed for cotransfer of markers syntenic with c-Ha-ras-1 on human chromosome 11. We also used cloned, dispersed human DNA repeats, in a general mapping strategy, to quantitate the amounts and molecular state of human DNA transferred along with the activated c-Ha-ras-1 gene. In situ hybridization was used to visualize the physical state of the transfected human chromatin. The combined use of these various techniques revealed the occurrence of both chromosomal and DNA rearrangements. However, our analysis also demonstrated that, in general, very substantial lengths of DNA are transferred intact. Closely linked markers are likely to cosegregate. Therefore, these transformants should be invaluable sources for the complete molecular cloning of isolated fragments of the short arm of human chromosome 11.  相似文献   

13.
A family of multiple autonomously replicating sequences (ARSs) which are located at several chromosomal ends of Hansenula polymorpha DL-1 has been identified and characterized. Genomic Southern blotting with an ARS, HARS36, originating from the end of a chromosome, as a probe showed several homologues in the genome of H. polymorpha. Nucleotide sequences of the three fragments obtained by a selective cloning for chromosomal ends were nearly identical to that of HARS36. All three fragments harbored an ARS motif and ended with 18 to 23 identical repetitions of 5′-GGGTGGCG-3′ which resemble the telomeric repeat sequence in other eukaryotes. Transformation of H. polymorpha with nonlinearized plasmids containing the newly obtained telomeric ARSs almost exclusively resulted in the targeted integration of a single copy or multiple tandem copies of the plasmid into the chromosomes. The sensitivity to exonuclease Bal31 digestion of the common DNA fragment in all integrants confirmed the telomeric origin of HARS36 homologues, suggesting that several chromosomal ends, if not all of them, consisted of the same ARS motif and highly conserved sequences observed in HARS36. Even though the frequencies of targeted recombination were varied among the ends of the chromosomes, the overall frequency was over 96%. The results suggested that the integration of the plasmids containing telemeric ARSs occurred largely through homologous recombination at the telomeric repeats, which serve as high-frequency recombination targets.  相似文献   

14.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A–T) and mouse chromosomes (1–19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.  相似文献   

15.
Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.  相似文献   

16.
Plasmid vectors capable for propagation of Bacillus subtilis DNA fragments containing riboflavin genes were constructed. Cloning of rib operon using pUB110 derivatives was performed in recE4 strain by using sequentional rescue of plasmids containing subfragments of the operon. Also, rib operon was cloned on the vectors containing DNA repeats. It was shown that the presence of direct and inverted repeats within plasmids allows to transform B. subtilis cells by monomers of plasmid DNA. Vectors that contained repeated sequences of DNA and ensured efficient cloning of genetic material in B. subtilis recipient cells were constructed. The use of streptococcal plasmid pSM19035 allowed to obtain vectors which were suitable for cloning large DNA fragments (6 MD and even more) in B. subtilis. A model of B. subtilis transformation by various types of plasmid DNA is presented. The model is in agreement with the general conception of chromosomal DNA transformation.  相似文献   

17.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.  相似文献   

18.
Nonintegrated plasmid-chromosome complexes in Escherichia coli.   总被引:10,自引:7,他引:3       下载免费PDF全文
A number of plasmid systems have been examined for the ability of their covalently closed circular deoxyribonucleic acid (CCC DNA) forms to cosediment in neutral sucrose gradients with the folded chromosomes of their respective hosts. Given that cosedimentation of CCC plasmid and chromosomal DNA represents a bound or complexed state between these replicons, our results can be expressed as follows. (i) All plasmid systems complex, on the average, at least one plasmid per chromosomal equivalent. (ii) Stringently controlled plasmids exist predominantly in the bound state, whereas the opposite is true for plasmids that exist in multiple copies or are under relaxed control of replication. (iii) The degree to which a plasmid population binds to host chromosomes appears to be a function of plasmid genotype and not of plasmid size. (iv) For the colicin E1 plasmid the absolute number of plasmids bound per folded chromosome equivalent does increase as the intracellular plasmid/chromosome ratio increases in cells starved for required amino acids or in cells treated with chloramphenicol; however, the ratio of bound to free plasmids remains constant during plasmid copy number amplification.  相似文献   

19.
D de Bruin  M Lanzer  J V Ravetch 《Genomics》1992,14(2):332-339
Molecular genetic studies of the human malaria parasite Plasmodium falciparum have been hampered in part due to difficulties in stably cloning and propagating parasite genomic DNA in bacteria. This is thought to be a result of the unusual A+T bias (>80%) in the parasite's DNA. Pulsed-field gel electrophoretic separation of P. falciparum chromosomes has shown that large chromosomal polymorphisms, resulting from the deletion of DNA from chromosome ends, frequently occur. Understanding the biological implications of this chromosomal polymorphism will require the analysis of large regions of genomic, and in particular telomeric, DNA. To overcome the limitations of cloning parasite DNA in bacteria, we have cloned genomic DNA from the P. falciparum strain FCR3 in yeast as artificial chromosomes. A pYAC4 library with an average insert size of approximately 100 kb was established and found to have a three to fourfold redundancy for single-copy genes. Unlike bacterial hosts, yeast stably maintain and propagate large tracts of parasite DNA. Long-range restriction enzyme mapping of YAC clones demonstrates that the cloned DNA is contiguous and identical to the native parasite genomic DNA. Since the telomeric ends of chromosomes are underrepresented in YAC libraries, we have enriched for these sequences by cloning P. falciparum telomeric DNA fragments (from 40 to 130 kb) as YACs by complementation in yeast.  相似文献   

20.
S A Lacks  B Greenberg 《Gene》1991,104(1):11-17
A procedure was devised for sequential cloning of chromosomal DNA by cyclical integration and excision of a plasmid vector so that slightly overlapping chromosomal segments are successively cloned. The method depends on circular integration of the vector into the chromosome of a host nonpermissive for its replication, and on excision and reduction of a recombinant plasmid by use of an appropriately designed set of restriction enzyme sites in the vector. A vector suitable for cloning in Escherichia coli was constructed by combining a segment of pBR322 with a gene encoding chloramphenicol resistance expressible in many species. Sequential cloning was demonstrated in Streptococcus pneumoniae by extending a previously cloned segment of the region of the chromosome encoding maltosaccharide utilization by 8 kb in three cycles of cloning. Accuracy of the method was confirmed by hybridization of cloned DNA with chromosomal restriction fragments. It is pointed out that the similarity of the requisite genetic processes in bacteria and yeasts should allow use of the method for sequential cloning of yeast chromosomal DNA and of human or other mammalian DNA in artificial chromosomes of yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号