首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed embryonic stem cell lines for their capacity to produce aggregation chimeras with diploid or developmentally compromised tetraploid embryos. Descendants of embryonic stem cells which contributed to midgestation fetuses at high levels were capable of supporting fetal development also with tetraploid partners. Different numbers of embryonic stem cells were introduced into diploid and tetraploid morulae as well as into blastocysts by microinjection. There were no differences in the frequency of embryonic stem cell-containing fetuses when comparing aggregation or injection into morulae versus blastocysts. However, the distribution pattern of embryonic stem cell derivatives in chimeric fetuses suggested that pre-compaction embryos are more suitable for generating fetuses with high embryonic stem cell contribution. Injection of embryonic stem cells into tetraploid embryos showed that completely embryonic stem cell-derived fetuses can also be produced by this technique. Totally embryonic stem cell derived fetuses were observed in each group, when embryonic stem cells were injected into diploid embryos. However, the rate of chimeras and chimerism was lower when 1 or 3 embryonic stem cells were used versus 8 or 15 cells. This suggests that the number of embryonic stem cells introduced might play a role in the colonization ability.  相似文献   

2.
Three erythrocyte populations (E, EA, A) were characterized during normal chick development by presence on cells of the embryonic (E) or adult (A) antigen or both (EA). Embryonic and adult stem cells were grafted into irradiated animals in order to distinguish the respective influence of stem cell origin and physiological conditions in the production of antigens. Adult marrow stem cells produce A erythrocytes. Embryonic stem cells (from 6- or 11-day-old embryo yolk sac) give rise first to E, then to EA populations. These results confirm the existence of adult stem cells with their own properties. It was not possible to decide whether the E and EA populations arise from a unique embryonic stem cell or from the existence of two stem cell populations.  相似文献   

3.
Chicken myogenic stem cells can undergo symmetric and asymmetric cell divisions. Symmetric divisions produce two stem cells or two cells committed to terminal muscle differentiation. Asymmetric divisions produce one stem cell and one committed cell. Committed cells undergo four divisions, and their progeny differentiate into postmitotic, biochemically distinct muscle cells, which can be identified immunocytochemically. The control of stem cell commitment was investigated in vitro by means of cell cloning and subcloning experiments, and computer modeling. We found that stem cell commitment is a process which can be modeled as a stochastic event, with a central tendency or probability of 0.2 +/- 0.1. This value is independent of organismal or mitotic age of the stem cells, cell density, or growth in a mitogen-poor environment. Myogenic stem cells stop dividing after approximately 30 divisions in vitro. Since the probability of commitment to terminal differentiation remains below 0.5, clonal senescence and terminal differentiation are separate processes in this system.  相似文献   

4.
The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelminths) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling intestinal stem cells proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation.  相似文献   

5.
Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors such as Activin, FGF and BMP in the control of early cell fate decisions of human pluripotent stem cells. This analysis resulted in the development and validation of chemically defined culture conditions for achieving specification of human embryonic stem cells into neuroectoderm, mesendoderm and into extra-embryonic tissues. Importantly, these defined culture conditions are devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Importantly, the growth factor roles defined using these culture conditions similarly drove differentiation of mouse epiblast stem cells derived from post implantation embryos, thereby reinforcing the hypothesis that epiblast stem cells share a common embryonic identity with human pluripotent stem cells. Therefore the defined growth factor conditions described here represent an essential step toward the production of mature cell types from pluripotent stem cells in conditions fully compatible with clinical use ant also provide a general approach for modelling the early steps of mammalian embryonic development.  相似文献   

6.
7.
Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine.  相似文献   

8.
Spermatogenesis originates in spermatogonial stem cells, which have the unique mode of replication. It is considered that a single stem cell can produce two stem cells (self-renewing division), one stem and one differentiating (asymmetric division), or two differentiating cells (differentiating division). However, little is known regarding how each type of division is regulated. In this investigation, we focused on the analysis of self- renewing division and examined the effect of the pituitary gland using two models of stem cell self-renewing division. In the first experiment using newborn mice, the administration of GnRH- analogue, which represses the release of gonadotropin, reduced the number of stem cells during postnatal testicular development, suggesting that the pituitary gland enhances stem cell self- renewing division. In the second experiment, however, the number of stem cells increased dramatically in hypophysectomized adult recipients after spermatogonial transplantation. Thus, the pituitary gland affects the self-renewing division of stem cells, but these contradictory results suggest that its role may be different depending on the stage of the testicular development.  相似文献   

9.
Stem cell and niche development in the postnatal rat testis   总被引:4,自引:0,他引:4  
Adult tissue stem cells self-renew and differentiate in a way that exactly meets the biological demand of the dependent tissue. We evaluated spermatogonial stem cell (SSC) activity in the developing rat testis and the quality and accessibility of the stem cell niche in wild type, and two busulfan-treated models of rat pup recipient testes using an SSC transplantation technique as a functional assay. While our results revealed a 69-fold increase in stem cell activity during rat testis development from neonate to adult, only moderate changes in SSC concentration were observed, and stem cells from neonate, pup, and adult donor testes produce spermatogenic colonies of similar size. Analysis of the stem cell niche in recipient rat testes demonstrated that pup testes support high levels of donor stem cell engraftment when endogenous germ cells are removed or compromised by busulfan treatment. Fertility was established when rat pup donor testis cells were transplanted into fetal- or pup-busulfan-treated recipient rat pup testes, and the donor genotype was transmitted to subsequent generations. These results provide insight into stem cell/niche interactions in the rat testis and demonstrate that techniques originally developed in mice can be extended to other species for regenerative medicine and germline modification.  相似文献   

10.
11.
Division of a female Drosophila stem cell produces a daughter stem cell and a cystoblast. The cystoblast produces a syncytial cluster of 16 cells by precisely four mitotic divisions and incomplete cytokinesis. Mutations in genes required for cystoblast differentiation, such as bag-of-marbles, block syncytial cluster formation and produce a distinctive "tumorous" or hyperplastic germ cell phenotype. In this paper, we compare the oogenic phenotype of benign gonial cell neoplasm mutations to that of mutations in bam. The data indicate that, like bam, bgcn is required for cystoblast development and that germ cells lacking bgcn become trapped in a stem cell-like state. One indication that germ cells lacking bgcn cannot form cystoblasts is that bgcn stem cells resist genetic ablation by Bam misexpression. Misexpression of Bam eliminates wild-type stem cells, apparently by inducing them to divide as cystoblasts. bgcn stem cells remain active when Bam is misexpressed, probably because they cannot adopt the cystoblast fate. Bgcn activity is not required for Bam protein expression but is essential for the localization of Bam protein to the fusome. Together, the results suggest that Bam and Bgcn cooperatively regulate cystoblast differentiation by controlling localization of Bam protein to the fusome.  相似文献   

12.
In insulin-dependent diabetes, the islet β cells do not produce enough insulin and the patients must receive exogenous insulin to control blood sugar. However, there are still many deficiencies in exogenous insulin supplementation. Therefore, the replacement of destroyed functional β cells with insulin-secreting cells derived from functional stem cells is a good idea as a new therapeutic idea. This review introduces the development schedule of mouse and human embryonic islets. The differences between mouse and human pancreas embryo development were also listed. Accordingly to the different sources of stem cells, the important research achievements on the differentiation of insulin-secreting β cells of stem cells and the current research status of stem cell therapy for diabetes were reviewed. Stem cell replacement therapy is a promising treatment for diabetes, caused by defective insulin secretion, but there are still many problems to be solved, such as the biosafety and reliability of treatment, the emergence of tumors during treatment, untargeted differentiation and autoimmunity, etc. Therefore, further understanding of stem cell therapy for insulin is needed.  相似文献   

13.
Human embryonic stem cells (HESCs) and induced pluripotent stem cells (HiPSCs) offer an immense potential as a source of cells for regenerative medicine. However, the ability of undifferentiated HESCs to produce tumors in vivo presents a major obstacle for the translation of this potential into clinical reality. Therefore, characterizing the nature of HESC-derived tumors, especially their malignant potential, is extremely important in order to evaluate the risk involved in their clinical use. Here we review recent observations on the tumorigenicity of human pluripotent stem cells. We argue that diploid, early passage, HESCs produce benign teratomas without undergoing genetic modifications. Conversely, HESCs that acquired genetic or epigenetic changes upon adaptation to in vitro culture can produce malignant teratocarcinomas. We discuss the molecular mechanisms of HESC tumorigenicity and suggest approaches to prevent tumor formation from these cells. We also discuss the differences in the tumorigenicity between mouse embryonic stem cells (MESCs) and HESCs, and suggest methodologies that may help to identify cellular markers for culture adapted HESCs.  相似文献   

14.
人胚胎干细胞向神经上皮祖细胞的诱导分化   总被引:1,自引:0,他引:1  
人胚胎干细胞具有自我更新和多向分化潜能,是研究早期胚胎发育和细胞替代治疗的重要细胞来源.采用一种与小鼠成纤维细胞共培养的方法进行人胚胎干细胞的神经诱导,可产生高纯度的神经上皮祖细胞,其神经上皮特异性基因的表达有一定的时空性;诱导生成的神经上皮祖细胞具有增殖潜能并可分化为神经元和星型胶质细胞,是潜在的神经干细胞.人胚胎干细胞来源的神经上皮祖细胞为研究神经发育和神经诱导提供了新材料,也为神经系统疾病的细胞替代治疗提供了新的细胞来源.  相似文献   

15.
The disease diabetes mellitus arises as a consequence of a failure of the beta-cells in the islets of Langerhans of the pancreas to produce insulin in the amounts required to meet the needs of the body. Whole pancreas or islet transplants in patients with severe diabetes effectively restore insulin production. A lack of availability of donor pancreata requires the development of alternative sources of islets such as the ex vivo culture and differentiation of stem/progenitor cells. Earlier we discovered multipotential progenitor cells in islets isolated from adult human pancreata that express the neural stem cell marker nestin: nestin-positive islet-derived progenitor cells (NIPs). Recently it was shown that the exclusion of the Hoechst 33342 dye, which defines the pluripotential side population (SP) of hematopoietic stem cells, is mediated by the ATP-binding cassette transporter, ABCG2. Here we report that the human islet-derived NIPs contain a substantial subpopulation of SP cells that co-express ABCG2, MDR1, and nestin. Thus NIPs may be a potential source of adult pluripotential stem/progenitor cells useful for the production of islet tissue for transplantation into diabetic subjects.  相似文献   

16.
Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells.  相似文献   

17.
Geng C 《Fly》2008,2(3):145-148
Regeneration of adult tissues relies on a small population of adult stem cells located in a specialized microenvironment. The adult stem cells divide continuously to produce new stem cells, as well as differentiated daughter cells to replenish lost cells due to damage or aging. The molecular mechanisms controlling their ability to divide, self-renew and differentiate remain largely undiscovered. The Drosophila reproductive systems have proven to be excellent models to understand the basic mechanisms regulating stem cell function. This report summarizes some of the recent advances in this field that were presented at the 49(th) Drosophila Research Conference held in San Diego in April 2008.  相似文献   

18.
The ability to selectively produce one or more differentiated cell types at will from totipotent stem cells would be of profound clinical importance, as it would enable the specific replacement of damaged/dysfunctional cell types within the body, potentially curing numerous diseases. Until recently, it was thought that the only cells that possessed sufficient immaturity to be capable of giving rise to more than one tissue type in vitro and in vivo were the embryonic stem cells. However, recent studies have now provided compelling evidence that the adult bone marrow, brain and skeletal muscle contain stem cells that possess the remarkable ability to trans-differentiate and give rise to progeny of alternate embryologic derivations. These recent findings have shattered the existing dogma that the stages of embryologic development are irreversible. In this review, we present a brief summary of the most significant findings in the field of stem cell plasticity, emphasizing studies involving the hematopoietic system, discussing the models used thus far, and finishing with our findings on human stem cell plasticity using the fetal sheep model.  相似文献   

19.
Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a new therapeutic vulnerability to drive differentiation to the normal cell phenotype.  相似文献   

20.
《Fly》2013,7(3):145-148
Regeneration of adult tissues relies on a small population of adult stem cells located in a specialized microenvironment. The adult stem cells divide continuously to produce new stem cells, as well as differentiated daughter cells to replenish lost cells due to damage or aging. The molecular mechanisms controlling their ability to divide, self-renew and differentiate remain largely undiscovered. The Drosophila reproductive systems have proven to be excellent models to understand the basic mechanisms regulating stem cell function. This report summarizes some of the recent advances in this field that were presented at the 49th Drosophila Research Conference held in San Diego in April 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号