首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When sperm of the sea urchin, Hemicentrotus pulcherrimus , were exposed to high pH (9.0) sea water, they showed large increases in intracellular Ca2+ ([Ca2+]i) and pH (pHi) and underwent the acrosome reaction (AR) without the aid of the egg jelly. Not only [Ca2+]i increase but also pHi rise did not occur under Ca2+-free conditions. Both the increases in [Ca2+]i and pHi and the AR by high pH were inhibited by a Ca2+ channel blockers, verapamil and nisoldipine, and by a lectin, wheat germ agglutinin (WGA) which interacts with a 220 kD membrane glycoprotein of sperm. These reagents inhibited also the AR by the egg jelly. The inhibitory effects of WGA were immediately canceled by the addition of N-acetyl-D-glucosamine, a sugar which is known to remove WGA from its binding site. These results suggest that 1) the same Ca2+ transport system is activated by high external pH and the egg jelly, 2) increase in [Ca2+]i is prerequisite for the stimulation of the H+-efflux system(s) and 3) the 220 kD WGA-binding membrane protein functions as a regulator protein of Ca2+ transport system.  相似文献   

2.
Protein kinase C (PKC) has been shown to play a role in events involved in fertilization such as activation of the Na+/H+antiporter and an NADPH dependent oxidase. In addition, it is involved in cell fate programming later in development of the sea urchin embryo. In order to further address the role of PKC in sea urchin development, we have screened a Lytechinus pictus ovary tissue cDNA library and identified one clone for sea urchin protein kinase C (suPKC1). This clone encodes a deduced protein with a molecular mass of 72.4 kDa, which shows strong homology to invertebrate and mammalian protein kinase C (PKC) sequences. PKC has been partially purified from eggs of L. pictus. This kinase activity has been shown to be dependent upon phosphatidylserine, diacylglycerol and Ca2+. In agreement with this biochemical data, suPKC1 has a C2 or Ca2+-binding domain suggesting its activity would be Ca2+-dependent. Polyclonal antibodies raised against peptides of the suPKC1 sequence recognize an antigen of approximately 71 kDa in DE52 fractions that contain PKC activity; this reactivity is not observed in fractions that lack PKC activity. Using a ribonuclease protection assay, we have demonstrated the presence of suPKC1 message throughout developmental stages of the sea urchin embryo.  相似文献   

3.
The lectin wheat germ agglutinin (WGA) inhibited the egg jelly-induced acrosome reaction (AR) of sperm of the sea urchin, Strongylocentrotus intermedius . Fluorescein-conjugated WGA applied to sperm bound to the acrosomal region, to the midpiece, and to the tip of the flagellum. These effects were not observed in the presence of N-acetly-D-glucosamine. When the egg jelly was replaced by artificial AR inducers such as A23187 or nigericin, the AR was not inhibited by WGA. Results obtained using a Ca2+ indicator fura-2, a pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF) and a membrane potential sensitive dye 3,3'-dipentyl 2,2'-dioxacarbocyanine [diO-C5(3)] showed that WGA suppresses the egg jelly-induced influx of Ca2+ and slightly suppresses the efflux of H+ caused by the egg jelly, whereas the depolarization of the plasma membrane by the egg jelly is remarkably amplified by the treatment with WGA. These results suggest that WGA affects the regulatory system of the ion fluxes associated with the AR. The target protein of WGA (WGA-binding protein) was a membrane glycoprotein of 260 kD under non-reducing condition.  相似文献   

4.
Barnea caridida oocytes release acid (1.35 pmole H+/oocyte) upon fertilization. After artificial activation by an excess of KCl, germinal vesicle breakdown (GVBD) occurs normally and a quite similar, but not identical, acid release is recorded (1.10 pmole H+/oocyte). KCl activation of Barnea oocytes is completely inhibited in 100 mM sodium-acetate sea water at pH 6.5 and fertilization does not result in activation when the oocytes are transferred after one minute into 100 mM sodium-acetate sea water at pH 6.3. When D–600, a calcium transmembrane fluxes inhibitor, is added 20 seconds after fertilization, GVBD is inhibited but a normal acid release is recorded. The presence of at least 10 mM sodium ions in the external medium is required for 100% activation of these oocytes by an excess of KCl. These results suggest that while an intracellular pH increase may be a requisite for GVBD, this can not be a sufficient condition to trigger it unless a calcium influx is allowed to occur. Moreover, the acid release does not result from a Ca++-H+ exchange transport but appears more likely to be due to a Na+-H* exchange as it has been demontrated in sea urchin eggs.  相似文献   

5.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

6.
Abstract A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward > Na+ extruded. It is energized by the Δψ 2 component of the ΔμH+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F 1 F 0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net ΔμH+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.  相似文献   

7.
Upon fertilization, the sea urchin egg synthesizes proteins which impart a Ca2+ dependence to M-phase onset. A potential target of this Ca2+ dependence may be CaM kinase-II (the multifunctional [type II] Ca2+/calmodulin [CaM]-dependent protein kinase) which is necessary for nuclear envelope breakdown in fertilized sea urchin eggs. This study was intended to determine whether sea urchin CaMK-II is activated after fertilization and whether it interacts with other known M-phase regulators, such as p34cdc2. We report that total CaMK-II activity, measured by solution assays, increases after fertilization, peaking just prior to cleavage. Interestingly, total CaMK-II activity continues to fluctuate, peaking again prior to second and third cleavage. Gel assays also reveal enhanced levels of the 56 and 62 kDa potential CaMK-II phosphoproteins after fertilization. Finally, CaMK-II activity and only the 62 kDa phosphoprotein physically associate with p34cdc2, but again only after fertilization. These changes in CaMK-II activity and p34cdc2-association after fertilization may ensure that Ca2+ signals are targeted to the M-phase machinery at the appropriate developmental times.  相似文献   

8.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

9.
10.
The allelic division of the Na+/K+-ATPase α-subunit gene was found in eggs of the sea urchin Hemicentrotus pulcherrimus by polymerase chain reaction (PCR). Two PCR products of different lengths were detected from a genome in one embryo derived from a fertilized egg, although only one product in one embryo derived from an artificially activated egg by parthenogenesis was detected, indicating one copy of the gene in a haploid genome. One of the two PCR products from each fertilized egg was identical in size to the product from an artificially activated egg in the same batch. The other PCR product was the same in length as one of the products from the sperm with which the eggs were fertilized. These results indicate that recombination of the heteromeric alleles of the Na+/K+-ATPase α-subunit gene occurs in the sea urchin egg due to meiosis and fertilization. The sequencing of these products demonstrated that their exon sequences were identical and that the intron, inserted in the PCR products, generated polymorphism in length due to the frequency of the repeating 53 bp sequence and insertion/deletion of other two segments.  相似文献   

11.
Transport across the plasma membrane is driven by an electrochemical gradient of H+ ions generated by the plasma membrane proton pump (H+-ATPase). Random mutants of Arabidopsis H+-ATPase AHA1 were isolated by phenotypic selection of growth of transformed yeast cells in the absence of endogenous yeast H+-ATPase (PMA1). A Trp-874-Leu substitution as well as a Trp-874 to Lys-935 deletion in the hydrophilic C-terminal domain of AHA1 conferred growth of yeast cells devoid of PMA1. A Trp-874-Phe substitution in AHA1 was produced by site-directed mutagenesis. The modified enzymes hydrolyzed ATP at 200–500% of wild-type level, had a sixfold increase in affinity for ATP (from 1.2 to 0.2 mM; pH 7.0), and had the acidic pH optimum shifted towards neutral pH. AHA1 did not contribute significantly to H+ extrusion by transformed yeast cells. The different species of aha1, however, displayed marked differences in initial rates of net H+ extrusion and in their ability to sustain an electrochemical H+ gradient. These results provide evidence that Trp-874 plays an important role in auto-inhibition of the plant H+-ATPase and may be involved in controlling the degree of coupling between ATP hydrolysis and H+ pumping. Finally, these results demonstrate the usefulness of yeast as a generalized screening tool for isolating regulatory mutants of plants transporters.  相似文献   

12.
In cultured cells derived from micromeres isolated at the 16-cell stage of sea urchin embryos, the activity of H+, K+-ATPase became detectable after 15 hr of culture, when the cells started to form spicules, and then increased reaching a plateau from 25 hr of culture. The Na+, K+-ATPase activity of isolated micromeres increased to a maximum at 20 hr of culture and thereafter decreased gradually. Allylisothiocyanate, an inhibitor of H+, K+-ATPase, caused a decrease in intracellular pH (pHi) accompanied by blockage of 45Ca deposition in spicule rods in spicule-forming cells at 30 hr of culture. Ouabain and amiloride had scarcely any effect on the pHi or 45, deposition. In cultured cells exposed to nifedipine, which blocked 45Ca deposition in spicule rods, allylisothiocyanate did not cause any decrease in pHi. These results show that H+, which is generated in the overall reaction to produce CaCO3 from Ca2+ and HCO3, is probably released from the cells mainly in the reaction catalyzed by H+, K+-ATPase to maintain successive production of CaCO3.  相似文献   

13.
Embryos kept with omeprazole, a specific H+, K+-ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+, K+-ATPase, an H+pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+, produced in overall reaction for CaCO3 formation: Ca2++ CO2+H2O°CaCO3+2H+, is probably released from the cells by this H+pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+, K+-ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ejection in H+, K+-ATPase reaction.  相似文献   

14.
We obtained a polyclonal antibody against the WGA-binding protein (WGAbp) of Strongylocentrotus intermedius sperm, which is a membrane glycoprotein of 260 kD under non-reducing condition. Anti-WGAbp antibody induced increases in both intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), resulting in the onset of the AR. The increases in [Ca2+]i and pHi required extracellular Ca2+ and Na+, respectively, and were suppressed by the pretreatment with WGA, resulting in the inhibition of the AR. Anti-WGAbp antibody-induced AR was inhibited also by lowered extracellular pH. elevated K+, removal of Na+ from seawater and the treatment with verapamil, a Ca2+ channel inhibitor. These inhibitory conditions are identical with those of the egg jelly-induced AR. Monovalent Fab fragments from anti-WGAbp antibody also induced the AR at relatively high concentration. These results suggest that the WGAbp on the sperm plasma membrane is involved in the regulation of Ca2+ influx and Na+/H+ exchange associated with the AR of S. intermedius sperm. It is a strong candidate for the receptor of the AR-inducing substance in the egg jelly.  相似文献   

15.
We examined the effects of two egg jelly components, a fucose sulfate glycoconjugate (FSG) and sperm-activating peptide I (SAP-I: Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly), on the intracellular pH (pHi) and Ca2+ ([Ca2+]i) of spermatozoa of the sea urchin Hemicentrotus pulcherrimus . FSG and/or SAP-I induced elevations of [Ca2+]; and pHi in the spermatozoa at pH 8.0. At pH 8.0, a second addition of FSG did not induced further elevation of the [Ca2+]i or pHi of spermatozoa treated with FSG, but addition or FSG after SAP-I or of SAP-I after FSG induced further increases of [Ca2+]i and pHi, At pH 6.6, FSG and/or SAP-I did not induce significant elevation of the [Ca2+]i, although SAP-I elevated the pHi, its half-maximal effective concentration being 10 to 100 pM. At pH 8.0, tetraethyl-ammonium, a voltage-sensitive K+-channel blocker, inhibited induction of the acrosome reaction and elevations of [Ca2+]i and pHi by FSG, but did not affect those by SAP-I. These results suggest that FSG and SAP-I activate different Ca2+ and H+ transport systems.  相似文献   

16.
Eggs of the sea urchin, Hemicentrotus pulcherrimus , were stimulated by halothane, known to induce Ca2+ release from sarcosome, to cause fertilization membrane formation in normal and Ca2+ free artificial sea water. In the absence of external Ca2+, halothane-induced formation of fertilization membrane was inhibited by dantrolene, an inhibitor of Ca2+ release from sarcosome, but was not blocked by nifedipine, a Ca2+ antagonist specific to Ca2+ channels in plasma membrane. Ca2+ release from sedimentable fraction isolated from eggs was induced by halothane and was inhibited by dantrolene, but was not blocked by nifedipine. In normal artificial sea water, halothane-caused egg activation was not inhibited either by dantrolene or by nifedipine, but was blocked in the presence of both compounds. 45Ca2+ influx was substantially stimulated by halothane in eggs exposed to 45CaCl2. Halothane-induced 45Ca2+ influx into eggs was inhibited by nifedipine but was not blocked by dantrolene. When Ca2+ release from intracellular organellae is blocked, Ca2+ transport through Ca2+ channels in plasma membrane probably acts as a "fail-safe" system to induce an increase in cytosolic Ca2+ level, resulting in egg activation.  相似文献   

17.
We have compared the mobility of a fluorescent lipid analogue and of fluorescently labeled membrane proteins at the animal and vegetal poles of the egg of the sea urchin Paracentrotus lividus. Translational diffusion coefficients have been measured by fluorescence microphotolysis ("photo-bleaching") on the egg which was rotated on its poles. Lipid and protein diffusion coefficients averaged 0.8 μm2/sec and 0.04 μm2/sec, respectively at both animal and vegetal pole of the egg. Substances which were known to animalize (Zn++) or vegetalize (Li+) the sea urchin egg had no significant effect on protein diffusion coefficients.  相似文献   

18.
Abstract An alkaliphilic cyanobacterium characterized as a Synechocystis species was purified from a soil sample taken from a village in Java, Indonesia, by its preferential growth at elevated pH; it grew optimally at pH 9.5. Phosphorus nuclear magnetic resonance studies showed that the organism can maintain a ΔpH of over 2 pH units at an external pH of 10. It was observed that the viability of the organism in the dark was dependent on sodium ions. Evidence from experiments in which the extrusion of Na+ was measured from cells subjected to an alkali shock suggests that the organism possesses a Na+ / H+ electrogenic antiporter which is used for the maintenance of pH homeostasis.  相似文献   

19.
A vacuolar Na^ /H^ antiporter cDNA gene was successfully isolated fromHordeum brevisubulatum (Trin.) Link using the rapid amplification ofcDNA ends (RACE) method. The gene was named HbNHXI and was found to consist of 1 916 bp encoding a predicted polypeptide of 540 amino acids with a conserved amiloride-binding domain. Phylogenetic tree analysis of the Na^ /H^ antiporters showed that the HbNHXI gene shares 55.3%-74.8% similarity with the vacuolar-type Na^ /H^ antiporters. Transgenic tobaccos that contain the HbNHXI gene, integrated by forward insertion into the tobacco genome, were obtained via Agrobacterium tumerfaciens and characterized for the determination of the concentration of Na^ and K^ ions, as well as proline, in the presence of 300 mmol/L NaCl. The T1 transgenic plants showed more tolerance to salt and drought than did wild-type plants. Our data suggest that overexpression of the HbNHXI gene could improve the tolerance of transgenic tobaccos to salt and drought through the function of the vacuolar Na^ /H^ antiporter.  相似文献   

20.
Ryanodine Activates Sea Urchin Eggs   总被引:3,自引:2,他引:1  
We have studied the effect on sea urchin eggs of ryanodine, a plant alkaloid that causes muscle contraction by opening calcium channels in the sarcoplasmic reticulum terminal cisternae. Ryanodine, although it is less effective that IP3, produces full or partial activation in 62% of injected sea urchin eggs. In addition ryanodine inhibits in a dose dependant manner 45Ca pumping in the isolated egg cortex or in eggs permeabilized with digitonin. Efflux experiments show that in fact ryanodine as IP3 stimulates the release of calcium sequestered intracellularly. We further show that these effects of ryanodine are inhibited by Mg++, ruthenium red and heparin. Our results suggest that ryanodine-sensitive intracellular calcium channels exist in the sea urchin egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号