首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Intercellular bridges between developing germ cells were observed in human fetal ovaries at 10 to 20 weeks gestation. Bridges were frequently found between cells in early stages of degeneration, with similar regressive changes being present in the conjoined cells. In advanced stages of cellular degeneration, bridges were less frequently found and were generally distorted and partially disrupted. Similarity in appearance of adjacent degenerating cells was common, even in late stages of degeneration. These observations suggest that cellular interconnection may be responsible for synchronous degeneration of germ cells during oogenesis.The author thanks Mrs. Lucy A. Conner for her valuable technical assistance. This research was supported by U.S.P.H.S. grant HD-05727.  相似文献   

2.
3.
Summary The ultrastructure of human placental capillaries was investigated using perfusion fixation and the freeze-fracturing technique. The capillaries have a continuous endothelium especially rich in microfilaments, whereas micropinocytotic vesicles are exceedingly scarce. The endothelial cells are connected by three types of junctions: (1) zonulae occludentes characterized by 2 to 4 focal regions of membrane contact in thin-sectioned specimens and an equal number of ridges on the membrane E-face in freeze-fractured specimens; (2) small gap junctions associated with the zonula occludens. (3) attachment plaques resembling zonulae adhaerentes in their fine structure. Endothelial cells are provided with long, circularly oriented pseudopodial extensions, which may be responsible for intermittent constrictions of the vessel lumen. These findings indicate that diaplacental transport at the level of the fetal capillary is controlled by the cytoplasm of the endothelial cells and probably occurs only to a very limited extent by way of micropinocytotic vesicles.Dedicated to Prof. Dr. Drs. h.c. W. Bargmann on his 70. birthdayWith the support of the Deutsche ForschungsgemeinschaftThe authors acknowledge the technical help of Mrs. E. Benecci, and the criticism and discussion of Drs. D.W. Fawcett and S. Ito. We are also indebted to Mr. R. Partsch (Zeiss, Inc. New York) for helping us with the goniometric study  相似文献   

4.
Ultrastructure of developing germ cells in the fetal human testis   总被引:4,自引:0,他引:4  
Electron microscopic studies of the testis were performed on 12 human embryos and fetuses between 9 and 30 weeks post conceptionem. According to their ultrastructural features, the fetal germ cells could be divided into the following three stages of differentiation: 1) gonocytes, 2) intermediate cells, and 3) fetal spermatogonia. Sertoli cells were present among the germ cells in all the testes studied. The gonocytes showed the highest nucleo-cytoplasmic ratio. Their round nucleus contained a centrally located, prominent nucleolus. The cytoplasm displayed a well developed Golgi apparatus, lipid droplets and parallel arrays of short cisternae of the rough surfaced endoplasmic reticulum (rER). Microfilaments were numerous, particularly just beneath the cell membrane. The intermediate cells were found to extend several cytoplasmic processes and to contain a moderate number of long, branched and/or widened rER cisterna which were frequently connected to the perinuclear cisterna. Intermediate cells were often connected to one another by intercellular cytoplasmic bridges. The fetal spermatogonia also displayed cytoplasmic bridges. These cells showed the lowest nucleo-cytoplasmic ratio and more condensed nuclear chromatin. The mitochondria were situated close to the nucleus. Many of them were connected by a cementing substance. Lipid droplets and rER cisternae were rare in these cells. Infoldings of the inner nuclear membrane were often present in the gonocytes and in the intermediate cells, but were rarely observed in the fetal spermatogonia. Glycogen particles, polyribosomes, and chromatoid bodies ("nuage") were present in all the three germ cell types. With the maturation of the fetus, the number of gonocytes was found to decrease, whereas the number of fetal spermatogonia increased. The Sertoli cells also changed their ultrastructure, showing an increase in the number of rER cisternae, as well as of microfilaments, lipid droplets, and secondary lysosomes.  相似文献   

5.
The zinc finger Y (Zfy) gene is located on the Y chromosome of all placental mammals. Although it is phylogenetically conserved and is expressed in mouse fetal testis, it is not the sex determining Y (Tdy) gene. To address the possible function of the Zfy gene in mice, the distribution of Zfy protein in fetal mice was investigated by immunocytochemical staining using several specific antisera against synthetic peptides of the mouse Zfy protein. Analysis of various fetal tissues at different embryonic stages demonstrated a specific staining only in fetal testis. In particular, reactive protein was initially observed in male fetal gonads at day 11.5 postcoitum (p.c.). The immuno-staining intensified in fetal testes at day 12 and 12.5 p.c., decreased drastically in those at day 13 and 14 p.c. and became undetectable in those at day 15 p.c. and beyond. The reactive molecules were distributed mostly within the seminiferous tubules of the embryonic testis. The present observations confirm the previous findings with RT-PCR analysis and indicate that Zfy or Zfy-like protein is expressed in stage-specific manner during early testis differentiation. Its location in the seminiferous tubules suggests a possible role in early germ cell development.  相似文献   

6.
Summary The ultrastructure of the normal human rete testis was analyzed. The rete testis cavities are irregularly shaped and contain virtually no spermatozoa. Smooth muscle cells often surround the cavities.In the epithelial lining, two cell types are distinguishable. Flat, dark cells exhibit numerous slender microvilli, and numerous apical and basal microvesicles. Prismatic, lighter cells have more cell organelles, mostly polarized towards a supranuclear position. Both cell types contain variable amounts of glycogen and fat, and an occasional cilium. All cells display intricate lateral cell surfaces that possess different cell-to-cell attachment devices. Intermediate cell types are frequently found.On a morphological basis, the epithelial cells seem to be involved in the release of substances into the lumen and probably also in transport towards the base.Connective tissue elements are found subjacent to the epithelium. Scattered among the fibrocytes are typical smooth muscle cells. Expansions of some smooth muscle cells are connected to the epithelial basement membrane by a network of microfibrillar material. The smooth muscle cells may be involved in changing the shape of the rete testis channels, thus promoting the flux of the rete testis fluid.Different types of nerve fibre bundles are distinguished in the connective tissue of the rete testis which may correspond to autonomic and sensory nerves or sensory receptors.Presented in part at the 31st Annual Meeting of the American Fertility Society, Los Angeles, April 1975Fellow of the Alexander von Humboldt Stiftung, on leave of absence from Depto. de Biologia Celular y Genética Sede Norte, Universidad de Chile, Santiago. Supported by travel aid from the Hamburgische Wissenschaftliche StiftungSupported by Grants from the Deutsche ForschungsgemeinschaftDedicated to Prof. Dr. Drs. h.c. Wolfgang Bargmann on the occasion of his 70th birthday  相似文献   

7.
The germ cell development strategy during spermatogenesis was investigated in the black swamp snake (Seminatrix pygaea). Testicular tissues were collected, embedded in plastic, sectioned by ultramicrotome, and stained with methylene blue and basic fuchsin. Black swamp snakes have a postnuptial pattern of development, where spermatogenesis occurs from May to July and spermiation is completed by October. Though spatial relationships are seen between germ cells within the seminiferous epithelium during specific months, accumulation of spermatogonia and spermatocytes early in spermatogenesis and the depletion of spermatocytes and accumulation of spermatids late in spermatogenesis prevent consistent cellular associations. This temporal germ cell development within an amniotic testis is consistent with that seen in other recently studied temperate reptiles (slider turtle and wall lizard). These reptiles’ temporal development is more similar to the developmental strategy found in anamniotes than the spatial germ cell development that characterizes birds and mammals. Our findings also imply that a third germ cell development strategy may exist in temperate breeding reptiles. Because of the phylogenetic position of reptiles between anamniotes and other terrestrial amniotes, this common germ cell development strategy shared by temperate reptiles representing different orders may have significant implications as far as the evolution of sperm development within vertebrates.  相似文献   

8.
Summary The human rete testis was examined with regard to 1) the number and distribution of entrances of seminiferous tubules, 2) the light microscopic topography and 3) details of the passages as revealed by scanning and transmission electron microscopy. In a newborn 1474 entrances were counted, approximately 50 % entering from the right and 50 % from the left of the central long axis. Three major subdivisions of the rete were distinguished and described: a septal (or interlobular) part represented by tubuli recti, a tunical (or mediastinal) part which is a true network of channels, and an extratesticular part characterized by dilatations (up to 3 mm wide) which we have called bullae retis. In SEM, cylindrical strands running from wall to wall in the tunical and extratesticular rete spaces are a prominent feature. We have called these chordae retis. They are covered by epithelium and are 5–40 m wide and 15 to more than 100 m long. They contain a peculiar tissue consisting of central myoid cells in a fibroelastic matrix. The smaller chordae are avascular. In the light of these findings the rete is interpreted as a highly complex myoelastic sponge. Its function is discussed.Supported in part by USPHS Grant HD-03752 and by a Senior Scientist Award from the Alexander von Humboldt-Stiftung which made the co-authorship possibleSupported by a grant from the Deutsche ForschungsgemeinschaftFor their kind support in supplying us with material, we are indebted to Dr. Janssen (Institut für Rechtsmedizin, Universität Hamburg), Dr. Mairose (Zentralkrankenhaus der Justizbehörde, Hamburg) and Dr. Hubman (Allgemeines Krankenhaus St. Georg, Hamburg). We thank Dr. Kaiser (Zoologisches Institut, Universität Hamburg) for his friendly, generous and competent help with the scanning electron microscopy. Ms. Joanna Davis gave invaluable help with the laborious reconstruction of the rete entrances  相似文献   

9.
Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh‐Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α‐smooth muscle actin‐labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3β‐HSD double‐positive fetal LCs could be observed in Amh‐Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3β‐HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs’ central role in fetal testis development.  相似文献   

10.
Actin-like filaments in the myoid cell of the testis   总被引:1,自引:0,他引:1  
Microfilaments in the myoid cells of the peritubular tissue in the mouse, swine and human testis bind heavy meromyosin (HMM) and form arrowhead complexes. The periodicity of the arrowhead complexes is about 35 nm. Individual filaments show arrowheads that point in the same direction. Opposing polarity of the HMM-bound filaments is also observed. The microfilaments do not bind HMM in the presence of 10 mM ATP. After treatment with the contraction medium of Hoffmann-Berling, the filaments appear to be undulated. These observations indicate that the microfilaments in the myoid cell are actin-like in nature. A small number of thicker filaments (about 10 nm in diameter) which do not bind HMM is also observed in the cell. Microfibrils which have been reported around the human myoid cell are also found in the swine.  相似文献   

11.
12.
Summary The interstitial cells of the pseudohermaphrodite rat testis are both hypertrophic and hyperplastic. The cytoplasm is characterized by smooth endoplasmic reticulum which is abundant and variable in form. Mitochondria are numerous and large with tubular cristae and occasional inclusions. Structural features of the Leydig cells indicate potential for increased steroid synthesis. The presence of large numbers of mast cells in the intertubular area is confirmed.Small seminiferous tubules lack advanced germinal elements. Additional connective tissue and myoepithelial layers produce a thickening of the limiting membrane. Some myoepithelial cells are atypical with an electron translucent cytoplasm and nuclei with dense peripheral chromatin. No spermatogenic cells beyond the cap phase of the spermatid are observed. The cytoplasm of Sertoli cells contains large lipid droplets and degenerating germ cells.The authors are greatly indebted to Drs. A. J. Stanley, J. E. Allison, and L. G. Gumbreck for kindly providing the animals for this study.  相似文献   

13.
Summary The ultrastructure of the pineal gland of 18 human fetuses (crown-rump lengths 30–178 mm) was investigated.The pineal gland exhibits a pyramidal shape and consists of an anterior and posterior lobe. Only one parenchymal cell type, the pinealocyte, was observed. Few neuroblasts were seen between the pinealocytes and in the extended perivascular space. The pinealocytes possess all the organelles necessary for hormone synthesis. No specific secretory granule could be observed. The organ is abundantly vascularized and richly innervated. The morphology of the capillaries indicates the existence of a blood-brain barrier.The ultrastructure of the human fetal pineal gland suggests that the gland has a secretory function in early intrauterine life. Acknowledgements. The author is grateful to Mrs. Yael Balslev and Miss Inger Ægidius for their able technical assistance. This investigation was supported in part by The Carl and Ellen Hertz's foundation and the Johann and Hanne Weimann foundation.  相似文献   

14.
15.
Summary Numerous mitoses were noted in testicular tissue from adult men with early germ cell tumors. More than 15 Leydig cells undergoing mitosis were found in the interstitial compartment. The presence of specific crystalline intracytoplasmatic inclusions demonstrated for the first time that differentiated Leydig cells are capable of proliferation. Occasionally cells are difficult to discriminate during mitosis. To establish reference criteria, the light- and electron-microscopic features of the following mitotic cells were examined: Leydig cells, fibroblasts, perivascular cells, peritubular cells, and lymphocytes. Supplementary mitoses in germ cell tumors and in a case of Leydig cell tumor were investigated. In the literature, only single reports of mitoses in Leydig cells are available. The frequent incidence of Leydig cell mitosis in early germ cell tumors may be due to the presence of growth-promoting factors in the testicular tissue.  相似文献   

16.
Summary Seminiferous tubules from human testes were mechanically isolated, the cut edges were sealed, and the tubules were cultured in medium free of fetal calf serum (FCS). Degeneration of germ cells occurred during the culture period and was paralleled by a disruption of the seminiferous epithelium, a disturbance in morphology and function of Sertoli cells, and a thickening of the lamina propria. However, when tubules were cultured for 5 days in the presence of FCS, degeneration of the spermatogenic tissue was reduced. FCS increased the mitotic activity of germ cells, but did not maintain normal morphology and function of Sertoli cells and cellular elements of the lamina propria. The thickening of the tubular wall concurred with a change in phenotype of lamina-propria cells from myoid to fibroblastic. Addition of nerve growth factor (NGF) to the culture medium (i) maintained the myoid phenotype of lamina-propria cells, (ii) prevented thickening of the tubular wall, and (iii) stabilized Sertoli cell morphology and function. The effects of NGF appeared to depend on the trophic effects of FCS, since NGF alone had no influence on the maintenance of a regular morphology of the spermatogenic epithelium. The present results indicate a decisive role for NGF in stabilizing specific functions of seminiferous tubules.  相似文献   

17.
18.
Summary The endocrine cells in the pancreas of five human fetuses with gestational ages of 18–20 weeks were examined by light and electron microscopy with special regard to argyrophil reactions. B-cells and typical A and D-cells were easily identified electron microscopically on the basis of their typical secretory granules. In the Grimelius argyrophil silver stain, a concentration of silver grains over the less electron dense peripheral mantle of the A-cell secretory granules was observed by electron microscopy. In the Hellerström and Hellman modification of the argyrophil Davenport alcoholic silver stain, silver grains were concentrated over the internal structures of the D-cell secretory granules. With this stain an accumulation of silver grains was also seen at the surface of the A-cell secretory granules. The argyrophil reaction of the A-granules was less pronounced than in the D-cells. In addition to B-cells and A- and D-cells, two other types of endocrine cell were observed by electron microscopy. These cells were argyrophil with the silver impregnation method of Grimelius. The electron microscopic findings at least partly explain the frequent overlapping between the two staining methods observed at the light microscope level.This study was supported by the Swedish Medical Research Council (Project No. 102)  相似文献   

19.
In mammals, germ cells derive from the pluripotent cells that are present early in embryogenesis, and then differentiate into male sperm or female eggs as development proceeds. Fusion between an egg and a sperm at fertilization allows genetic information from both parents to be transmitted to the next generation, and produces a pluripotent zygote to initiate the next round of embryogenesis. Meiosis is a central event in this self-perpetuating cycle that creates genetic diversity by generating new combinations of existing genetic alleles, and halves the number of chromosomes in the developing male and female germ cells to allow chromosome number to be maintained through successive generations. The developing germ cells also help to maintain genetic and chromosomal stability through the generations by protecting the genome from excessive de novo mutation. Several mouse mutants have recently been characterised whose germ cells exhibit defects in silencing the potentially mutagenic endogenous retroviruses and other retrotransposons that are prevalent in mammalian genomes, and these germ cells also exhibit defects in progression through meiosis. Here we review how mouse germ cells develop and proceed through meiosis, how mouse germ cells silence endogenous retroviruses and other retrotransposons, and discuss why silencing of endogenous retroviruses and other retrotransposons may be required for meiotic progression in mice.  相似文献   

20.
Summary The fine structure of amniotic and amniotic-plaque epithelia has been studied from normal term pregnancies. The columnar/cuboidal amniotic epithelial cells usually have apical or central nuclei, some free ribosomes, patches of granular endoplasmic reticulum, juxtanuclear Golgi complexes, rod-shaped mitochondria, lipid droplets and some glycogen granules. They have short, blunt microvilli which frequently branch and bathe in the amniotic fluid. The lateral plasma membranes enclose tortuous intercellular spaces which are always interrupted by variously folded processes and desmosomes. The epithelial cells rest on a basal lamina and exhibit highly folded basal processes. The amniotic epithelial cells are neither distinctly Golgi and fibrillar types nor light and dark in appearance.Amnion from near the umbilical cord contains many microscopic and several large plaques. Similar structures are not found on the reflected amnion. The microscopic plaques are whitish and translucent, whereas the large ones are opaque. The large plaques vary between 1–3 mm in diameter, and are over 15 cell layers thick. Each large plaque has a main central region and edges continuous with either the microscopic plaque or the simple amniotic epithelium. The main region shows four zones, namely, stratum basale, stratum spinosum, stratum granulosum and stratum corneum. Such zones are not distinct at the edges. The fine structure of basal cells compares with the amniotic epithelial cells, but the cells of spinosum and granulosum layers possess variable amounts of tonofibrils, keratohyalin granules, free ribosomes and other cytoplasmic organelles and inclusions. The corneum cells are keratinized and are frequently separated by intercellular spaces. They slough into the amniotic cavity singly or as a sheet, and contribute towards the composition of the amniotic fluid. The plaques are of amniotic origin, and are not formed by adhesion of either squamous cells or fetal skin cells (masses of keratinized squames). The present observations suggest that the occurrence of amniotic plaques is normal. The presence of plaques may not be necessarily associated with fetal abnormality. However, increase in numbers of plaques may be caused by conditions of fluid imbalance. The homology and significance of plaques in eutherian mammals have been discussed.This research was supported by USPHS Grant AM-11376 and NIH Grant 69-2136.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号