共查询到20条相似文献,搜索用时 15 毫秒
1.
Alejandra Bravo Isabel Gómez Helena Porta Blanca Ines García‐Gómez Claudia Rodriguez‐Almazan Liliana Pardo Mario Soberón 《Microbial biotechnology》2013,6(1):17-26
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate‐limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. 相似文献
2.
Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis 总被引:4,自引:0,他引:4
Pardo-López L Muñoz-Garay C Porta H Rodríguez-Almazán C Soberón M Bravo A 《Peptides》2009,30(3):589-595
Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore-forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some insect pests are not affected by them or show low susceptibility. In addition, the development of resistance threatens their effectiveness, so strategies to cope with all these problems are necessary. In this review we will discuss and compare the different strategies that have been used to improve insecticidal activity of Cry toxins. The activity of Cry toxins can be enhanced by using additional proteins in the bioassay like serine protease inhibitors, chitinases, Cyt toxins, or a fragment of cadherin receptor containing a toxin-binding site. On the other hand, different modifications performed in the toxin gene such as site-directed mutagenesis, introduction of cleavage sites in specific regions of the protein, and deletion of small fragments from the amino-terminal region lead to improved toxicity or overcome resistance, representing interesting alternatives for insect pest control. 相似文献
3.
Donghai Peng Xiaohui Xu Weixing Ye Ziniu Yu Ming Sun 《Applied microbiology and biotechnology》2010,85(4):1033-1040
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is
essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae
species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding
to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement
was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of
Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1,
which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal
activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops. 相似文献
4.
Yaoi K Nakanishi K Kadotani T Imamura M Koizumi N Iwahana H Sato R 《FEBS letters》1999,463(3):221-224
The Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different. The Cry1Aa toxin bound to the fragment containing 40-Asp to 313-Lys, suggesting that the Cry1Aa toxin-binding site is located in the region between 40-Asp and 313-Lys, while Cry1Ac toxin bound exclusively to mature APN. Next, recombinant APN of various lengths was expressed in Escherichia coli cells and its ability to bind to Cry1Aa toxin was examined. The results localized the Cry1Aa toxin binding to the region between 135-Ile and 198-Pro. 相似文献
5.
Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa 总被引:1,自引:0,他引:1
Vachon V Préfontaine G Coux F Rang C Marceau L Masson L Brousseau R Frutos R Schwartz JL Laprade R 《Biochemistry》2002,41(19):6178-6184
Helix 3 of the Cry1Aa toxin from Bacillus thuringiensis possesses eight charged amino acids. These residues, with the exception of those involved in intramolecular salt bridges (E90, R93, E112, and R115), were mutated individually either to a neutral or to an oppositely charged amino acid. The mutated genes were expressed, and the resultant, trypsin-activated toxins were assessed for their toxicity to Manduca sexta larvae and their ability to permeabilize M. sexta larval midgut brush border membrane vesicles to KCl, sucrose, raffinose, potassium gluconate, and N-methyl-D-glucamine hydrochloride with a light-scattering assay based on osmotic swelling. Most mutants were considerably less toxic than Cry1Aa. Replacing either E101, E116, E118, or D120 by cysteine, glutamine, or lysine residues had only minor effects on the properties of the pores formed by the modified toxins. However, half of these mutants (E101C, E101Q, E101K, E116K, E118C, and D120K) had a significantly slower rate of pore formation than Cry1Aa. Mutations at R99 (R99C, R99E, and R99Y) resulted in an almost complete loss of pore-forming ability. These results are consistent with a model in which alpha-helix 3 plays an important role in the mechanism of pore formation without being directly involved in determining the properties of the pores. 相似文献
6.
Genetic knockout of the BtR4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to resistance against Cry1Ac toxin from Bacillus thuringiensis. However, the functional Cry1Ac receptor role of this protein has not been established. We previously proposed HevCaLP as a shared binding site for B. thuringiensis (Bt) Cry1A and Cry1Fa toxins in the midgut epithelium of H. virescens larvae. Considering that Cry1Ac and Cry1Fa are coexpressed in second-generation transgenic cotton for enhanced control of Heliothine and Spodoptera species, our model suggests the possibility of evolution of cross resistance via alteration of HevCaLP. To test whether HevCaLP is a Cry1Ac and Cry1Fa receptor, HevCaLP was transiently expressed on the surface of Drosophila melanogaster Schneider 2 (S2) cells. Expressed HevCaLP bound [(125)I]Cry1A toxins under native (dot blot) and denaturing (ligand blot) conditions. Affinity pull-down assays demonstrated that Cry1Fa does not bind to HevCaLP expressed in S2 cells or in solubilized brush border membrane proteins. Using a fluorescence-based approach, we tested the ability of expressed HevCaLP to mediate toxicity of Cry1A and Cry1Fa toxins. Cry1A toxins killed S2 cells expressing HevCaLP, whereas Cry1Fa toxin did not. Our results demonstrate that HevCaLP is a functional Cry1A but not Cry1Fa receptor. 相似文献
7.
8.
S Herrero J González-Cabrera B E Tabashnik J Ferré 《Applied and environmental microbiology》2001,67(12):5729-5734
Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. 相似文献
9.
Vazquez-Padron RI de la Riva G Agüero G Silva Y Pham SM Soberón M Bravo A Aïtouche A 《FEBS letters》2004,570(1-3):30-36
Cry1Ab is one of the most studied insecticidal proteins produced by Bacillus thuringiensis during sporulation. Structurally, this protoxin has been divided in two domains: the N-terminal toxin core and the C-terminal portion. Although many studies have addressed the biochemical characteristics of the active toxin that corresponds to the N-terminal portion, there are just few reports studying the importance of the C-terminal part of the protoxin. Herein, we show that Cry1Ab protoxin has a unique natural cryptic endotoxic property that is evident when their halves are expressed individually. This toxic effect of the separate protoxin domains was found against its original host B. thuringiensis, as well as to two other bacteria, Escherichia coli and Agrobacterium tumefaciens. Interestingly, either the fusion of the C-terminal portion with the insecticidal domain-III or the whole N-terminal region reduced or neutralized such a toxic effect, while a non-Cry1A peptide such as maltose binding protein did not neutralize the toxic effect. Furthermore, the C-terminal domain, in addition to being essential for crystal formation and solubility, plays a crucial role in neutralizing the toxicity caused by a separate expression of the insecticidal domain much like a dot/anti-dot system. 相似文献
10.
Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity 总被引:2,自引:0,他引:2
The cadherin protein Bt-R(1a) is a receptor for Bacillus thuringiensis Cry1A toxins in Manduca sexta. Cry1Ab toxin is reported to bind specific epitopes located in extracellular cadherin repeat (CR) 7 and CR11 on Bt-R(1) (Gomez, B., Miranda-Rios, J., Riudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., and Soberon, M. (2002) J. Biol. Chem. 277, 30137-30143; Dorsch, J. A., Candas, M., Griko, N., Maaty, W., Midboe, E., Vadlamudi, R., and Bulla, L. (2002) Insect Biochem. Mol. Biol. 32, 1025-1036). We transiently expressed CR domains of Bt-R(1a) in Drosophila melanogaster Schneider 2 (S2) cells as fusion peptides between a signal peptide and a terminal region that included membrane-proximal, membrane-spanning, and cytoplasmic domains. A domain consisting of CR11 and 12 was the minimal (125)I-Cry1Ab binding region detected under denaturing conditions. Only CR12 was essential for Cry1Ab binding and cytotoxicity to S2 cells when tested under native conditions. Under these conditions expressed CR12 bound (125)I-Cry1Ab with high affinity (K(com) = 2.9 nm). Flow cytometry assays showed that expression of CR12 conferred susceptibility to Cry1Ab in S2 cells. Derivatives of Bt-R(1a) with separate deletions of CR7, 11, and 12 were expressed in S2 cells. Only deletion of CR12 caused loss of Cry1Ab binding and cytotoxicity. These results demonstrate that CR12 is the essential Cry1Ab binding component on Bt-R(1) that mediates Cry1Ab-induced cytotoxicity. 相似文献
11.
Gómez I Pardo-López L Muñoz-Garay C Fernandez LE Pérez C Sánchez J Soberón M Bravo A 《Peptides》2007,28(1):169-173
Cry toxins from Bacillus thuringiensis are used for insect control. Their primary action is to lyse midgut epithelial cells. In this review we will summarize recent findings on the Cry toxin-receptor interaction and the role of receptor recognition in their mode of action. Cry toxins interact sequentially with multiple receptors. In lepidopteran insects, Cry1A monomeric toxins interact with the first receptor and this interaction triggers oligomerization of the toxins. The oligomer then interacts with second receptor inducing insertion into membrane microdomains and larval death. In the case of mosquitocidal toxins, Cry and Cyt toxins play a part. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin resistance. Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin. 相似文献
12.
13.
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies. 相似文献
14.
Fortier M Vachon V Marceau L Schwartz JL Laprade R 《Biochimica et biophysica acta》2007,1768(5):1291-1298
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed. 相似文献
15.
增强Bt Cry毒素杀虫作用的重要途径:增效因子的利用及晶体蛋白的遗传改良 总被引:1,自引:0,他引:1
Bt Cry毒素广泛应用于害虫防治,但存在杀虫谱窄、活性低、靶标害虫易产生抗性等缺点.为了弥补这些不足,采取适当措施增强Cry毒素的杀虫作用十分必要.本文围绕Cry毒素的作用机理,论述了利用丝氨酸蛋白酶抑制剂、几丁质酶、增效蛋白、钙粘蛋白片段和Cyt毒素等增效因子提高Cry毒素的杀虫活性,延缓昆虫抗性的研究进展;探讨了利用基因定点突变、蛋白融合和杂交以及晶体蛋白末端小片段的去除等分子技术手段对毒素蛋白进行遗传改良,改善Cry毒素的杀虫性能,扩大其杀虫范围. 相似文献
16.
Fortier M Vachon V Frutos R Schwartz JL Laprade R 《Applied and environmental microbiology》2007,73(19):6208-6213
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities. 相似文献
17.
Aim: To select a toxin combination for the management of maize stem borer (Chilo partellus) and to understand possible mechanism of synergism among Bacillus thuringiensis Cry1A toxins tested. Methods and Results: Three Cry1A toxins were over expressed in Escherichia coli strain JM105 and used for diet overlay insect bioassay against C. partellus neonate larvae, both alone and in combinations. Probit analysis revealed that the three Cry1A toxins tested have synergistic effect against C. partellus larvae. In vitro binding analysis of fluorescein isothiocyanate (FITC)‐labelled Cry1A toxins to midgut brush border membrane vesicle (BBMV) shows that increase in toxicity is directly correlated to an increase in binding of toxin mix. Conclusions: A high Cry1Ac to Cry1Ab ratio leads to an increase in efficacy of these toxins towards C. partellus larvae and this increase in toxicity comes from an increase in toxin binding. Significance and Impact of the Study: Use of Cry1Ab and Cry1Ac combination could be an effective approach to control C. partellus. Furthermore, we show it first time that possible reason behind increase in toxicity of synergistic Cry1A proteins is an increase in toxin binding. 相似文献
18.
The binding component (Vip1Ac) of the ADP-ribosylating vegetative insecticidal protein (Vip) of Bacillus thuringiensis HD201 was isolated from the supernatant of cell cultures. Vip1Ac protein solubilized at room temperature ran as oligomers on SDS-PAGE. These oligomers were not resistant to heating. Mass spectroscopic analysis of this high molecular mass band identified it as Vip1Ac. The protein formed in artificial lipid bilayer membranes channels with two conductance states of about 350 and 700 pS in 1 M KCl. The channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero-current membrane potential measurements showed that the Vip1Ac channel has a slightly higher permeability for chloride than for potassium ions. Asymmetric addition of Vip1Ac to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. The functional role of Vip1Ac and its relationship to other ADP-ribosylating toxins are discussed. 相似文献
19.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins. 相似文献
20.
Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm 总被引:2,自引:0,他引:2
Toxins from Bacillus thuringiensis (Bt) are widely used for pest control. In particular, Bt toxin Cry1Ac produced by transgenic cotton kills some key lepidopteran pests. We found that Cry1Ac binds to recombinant peptides corresponding to extracellular regions of a cadherin protein (BtR) in a major cotton pest, pink bollworm (Pectinophora gossypiella) (PBW). In conjunction with previous results showing that PBW resistance to Cry1Ac is linked with mutations in the BtR gene, the results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW. Similar to other lepidopteran cadherins that bind Bt toxins, BtR has at least two Cry1Ac-binding domains in cadherin-repeat regions 10 and 11, which are immediately adjacent to the membrane proximal region. However, unlike cadherins from Manduca sexta and Bombyx mori, toxin binding was not seen in regions more distal from the membrane proximal region. We also found that both the protoxin and activated toxin forms of Cry1Ac bound to recombinant BtR fragments, suggesting that Cry1Ac activation may occur either before or after receptor binding. 相似文献