首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.  相似文献   

2.
Bacillus thuringiensis Cry toxins are used worldwide as insecticides in agriculture, in forestry, and in the control of disease transmission vectors. In the lepidopteran Manduca sexta, cadherin (Bt-R1) and aminopeptidase-N (APN) function as Cry1A toxin receptors. The interaction with Bt-R1 promotes cleavage of the amino-terminal end, including helix α-1 and formation of prepore oligomer that binds to APN, leading to membrane insertion and pore formation. Loops of domain II of Cry1Ab toxin are involved in receptor interaction. Here we show that Cry1Ab mutants located in domain II loop 3 are affected in binding to both receptors and toxicity against Manduca sexta larvae. Interaction with both receptors depends on the oligomeric state of the toxin. Monomers of loop 3 mutants were affected in binding to APN and to a cadherin fragment corresponding to cadherin repeat 12 but not with a fragment comprising cadherin repeats 7–12. In contrast, the oligomers of loop 3 mutants were affected in binding to both Bt-R1 fragments but not to APN. Toxicity assays showed that either monomeric or oligomeric structures of Cry1Ab loop 3 mutations were severely affected in insecticidal activity. These data suggest that loop 3 is differentially involved in the binding with both receptor molecules, depending on the oligomeric state of the toxin and also that possibly a “ping pong” binding mechanism with both receptors is involved in toxin action.  相似文献   

3.
Phage display is an in vitro method for selecting polypeptides with desired properties from a large collection of variants. The insecticidal Cry toxins produced by Bacillus thuringiensis are highly specific to different insects. Various proteins such as cadherin, aminopeptidase-N (APN) and alkaline phosphatase (ALP) have been characterized as potential Cry-receptors. We used phage display to characterize the Cry toxin-receptor interaction(s). By employing phage-libraries that display single-chain antibodies (scFv) from humans or from immunized rabbits with Cry1Ab toxin or random 12-residues peptides, we have identified the epitopes that mediate binding of lepidopteran Cry1Ab toxin with cadherin and APN receptors from Manduca sexta and the interaction of dipteran Cry11Aa toxin with the ALP receptor from Aedes aegypti. Finally we displayed in phages the Cry1Ac toxin and discuss the potential for selecting Cry variants with improved toxicity or different specificity.  相似文献   

4.
The primary action of Cry toxins produced by Bacillus thuringiensis is to lyse midgut epithelial cells in their target insect by forming lytic pores. The toxin-receptor interaction is a complex process, involving multiple interactions with different receptor and carbohydrate molecules. It has been proposed that Cry1A toxins sequentially interact with a cadherin receptor, leading to the formation of a pre-pore oligomer structure, and that the oligomeric structure binds to glycosylphosphatidyl-inositol-anchored aminopeptidase-N (APN) receptor. The Cry1Ac toxin specifically recognizes the N-acetylgalactosamine (GalNAc) carbohydrate present in the APN receptor from Manduca sexta larvae. In this work, we show that the Cry1Ac pre-pore oligomer has a higher binding affinity with APN than the monomeric toxin. The effects of GalNAc binding on the toxin structure were studied in the monomeric Cry1Ac, in the soluble pre-pore oligomeric structure, and in its membrane inserted state by recording the fluorescence status of the tryptophan (W) residues. Our results indicate that the W residues of Cry1Ac have a different exposure to the solvent when compared with that of the closely related Cry1Ab toxin. GalNAc binding specifically affects the exposure of W545 in the pre-pore oligomer in contrast to the monomer where GalNAc binding did not affect the fluorescence of the toxin. These results indicate a subtle conformational change in the GalNAc binding pocket in the pre-pore oligomer that could explain the increased binding affinity of the Cry1Ac pre-pore to APN. Although our analysis did not reveal major structural changes in the pore-forming domain I upon GalNAc binding, it showed that sugar interaction enhanced membrane insertion of soluble pre-pore oligomeric structure. Therefore, the data presented here permits to propose a model in which the interaction of Cry1Ac pre-pore oligomer with APN receptor facilitates membrane insertion and pore formation.  相似文献   

5.
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies.  相似文献   

6.
Based on the observation of large conductance states formed by Bacillus thuringiensis Cry toxins in synthetic planar lipid bilayers and the estimation of a pore size of 10-20 A, it has been proposed that the pore could be formed by an oligomer containing four to six Cry toxin monomers. However, there is a lack of information regarding the insertion of Cry toxins into the membrane and oligomer formation. Here we provide direct evidence showing that the intermolecular interaction between Cry1Ab toxin monomers is a necessary step for pore formation and toxicity. Two Cry1Ab mutant proteins affected in different steps of their mode of action (F371A in receptor binding and H168F in pore formation) were affected in toxicity against Manduca sexta larvae. Binding analysis showed that F371A protein bound more efficiently to M. sexta brush border membrane vesicles when mixed with H168F in a one to one ratio. These mutant proteins also recovered pore-formation activity, measured with a fluorescent dye with isolated brush border membrane vesicles, and toxicity against M. sexta larvae when mixed, showing that monomers affected in different steps of their mode of action can form functional hetero-oligomers.  相似文献   

7.
The Cry1Ab toxin produced by Bacillus thuringiensis (Bt) exerts insecticidal action upon binding to BT-R1, a cadherin receptor localized in the midgut epithelium of the tobacco hornworm Manduca sexta [Dorsch, J. A., Candas, M., Griko, N. B., Maaty, W. S., Midboe, E. G., Vadlamudi, R. K., and Bulla, L. A., Jr. (2002) Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochem. Mol. Biol. 32, 1025-1036]. BT-R1 represents a family of invertebrate cadherins whose ectodomains (ECs) are composed of multiple cadherin repeats (EC1 through EC12). In the present work, we determined the Cry1Ab toxin binding site in BT-R1 in the context of cadherin structural determinants. Our studies revealed a conserved structural motif for toxin binding that includes two distinct regions within the N- and C-termini of EC12. These regions are characterized by unique sequence signatures that mark the toxin-binding function in BT-R1 as well as in homologous lepidopteran cadherins. Structure modeling of EC12 discloses the conserved motif as a single broad interface that holds the N- and C-termini in close proximity. Binding of toxin to BT-R1, which is univalent, and the subsequent downstream molecular events responsible for cell death depend on the conserved motif in EC12.  相似文献   

8.
In susceptible lepidopteran insects, aminopeptidase N and cadherin-like proteins are the putative receptors for Bacillus thuringiensis (Bt) toxins. Using phage display, we identified a key epitope that is involved in toxin-receptor interaction. Three different scFv molecules that bind Cry1Ab toxin were obtained, and these scFv proteins have different amino acid sequences in the complementary determinant region 3 (CDR3). Binding analysis of these scFv molecules to different members of the Cry1A toxin family and to Escherichia coli clones expressing different Cry1A toxin domains showed that the three selected scFv molecules recognized only domain II. Heterologous binding competition of Cry1Ab toxin to midgut membrane vesicles from susceptible Manduca sexta larvae using the selected scFv molecules showed that scFv73 competed with Cry1Ab binding to the receptor. The calculated binding affinities (K(d)) of scFv73 to Cry1Aa, Cry1Ab, and Cry1Ac toxins are in the range of 20-51 nm. Sequence analysis showed this scFv73 molecule has a CDR3 significantly homologous to a region present in the cadherin-like protein from M. sexta (Bt-R(1)), Bombyx mori (Bt-R(175)), and Lymantria dispar. We demonstrated that peptides of 8 amino acids corresponding to the CDR3 from scFv73 or to the corresponding regions of Bt-R(1) or Bt-R(175) are also able to compete with the binding of Cry1Ab and Cry1Aa toxins to the Bt-R(1) or Bt-R(175) receptors. Finally, we showed that synthetic peptides homologous to Bt-R(1) and scFv73 CDR3 and the scFv73 antibody decreased the in vivo toxicity of Cry1Ab to M. sexta larvae. These results show that we have identified the amino acid region of Bt-R(1) and Bt-R(175) involved in Cry1A toxin interaction.  相似文献   

9.
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K+ ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K+ ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.  相似文献   

10.
A functional assessment of Bacillus thuringiensis (Bt) toxin receptors in the midgut of lepidopteran insects will facilitate understanding of the toxin mode of action and provide effective strategies to counter the development of resistance. In this study, we produced anti-aminopeptidase (APN) and anti-cadherin sera with purified Cry1Ac toxin-binding APN or cadherin fragments from Heliocoverpa armigera. Antisera were evaluated for their effects on Cry1Ac toxicity through bioassays. Our results indicated that both the anti-APN and anti-cadherin sera reduced Cry1Ac toxicity in vivo, although cadherin antiserum reduced toxicity more than APN antiserum. These results suggest that both APN and cadherin are involved in Cry1Ac intoxication of H. armigera, evidence that the pore formation model may be representative of Cry1Ac toxin mode of action in this insect.  相似文献   

11.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

12.
苏云金芽孢杆菌Bacillus thuringiensis生产的晶体毒素被广泛用作农林害虫的杀虫剂。鳞翅目昆虫受体蛋白是阐明其与晶体毒素相互作用的重要模式。文中纯化了苏云金芽孢杆菌的晶体毒素蛋白,质谱鉴定为Cry1Ac毒素,然后重组表达家蚕氨肽酶N (BmAPN6) 和类钙粘蛋白 (CaLP) 结合结构域。利用免疫共沉淀、Far-Western印迹和酶联免疫吸附试验,证明Cry1Ac毒素蛋白和BmAPN6之间的相互作用。在Sf9细胞中,对Cry1Ac毒素的细胞毒活性分析,表明BmAPN6参与Cry1Ac毒素诱导的细胞形态异常和裂解死亡。文中也利用相同的方法,对钙粘蛋白的3个结合位点CR7、CR11和CR12进行相互作用分析,结果表明3个重复结构域是CaLP的Cry1Ac结合位点。上述结果表明,BmAPN6和CaLP可作为Cry1Ac毒素致病的功能性受体,为进一步揭示晶体毒素的致病机制和基因编辑增强家蚕抗病性提供了研究靶标。  相似文献   

13.
Bt toxins ingested by insect pests can bind to midgut receptors and cause death, although several steps in this process remain unclear. Multiple Bt toxin receptors have been identified in Lepidoptera, including a cadherin-like protein (CaLP), which is central to several models explaining Bt toxins’ mode of action. Mutations in the Plutella xylostella ATP-dependent binding cassette transporter C2 (Px-abcc2), rather than CaLP, are genetically linked with Bt Cry1Ac resistance. Here we expressed Px-abcc2 in Drosophila and performed larval bioassays to determine whether this protein acts as an effective Bt receptor. Cry1Ac had no effect on larvae expressing Px-abcc2 in salivary glands, yet larvae expressing Px-abcc2 in the midgut were highly susceptible to both Cry1Ac protoxin and trypsin activated toxin. Furthermore, the CaLP orthologue has been lost from the Drosophila genome, making this a useful system for investigating the role of CaLP peptides from Manduca sexta (CR12-MPED), which are known to act as Bt synergists in larval feeding assays. Drosophila larvae expressing Px-ABCC2 in the midgut were fed LD50 concentrations of Cry1Ac toxin or protoxin, plus purified CR12-MPED cloned from M. sexta or P. xylostella. The M. sexta CR12-MPED protein acted synergistically with Cry1Ac protoxin and activated toxin significantly more effectively than the P. xylostella peptide. This work demonstrates ABCC2 is the major functional Cry1Ac receptor for P. xylostella and the importance of CaLP proteins in Bt mode of action may vary between different lepidopteran species.  相似文献   

14.
15.
Bacillus thuringiensis subsp. israelensis produces three Cry toxins (Cry4Aa, Cry4Ba and Cry11Aa) that are active against Aedes aegypti larvae. The identification of the rate-limiting binding steps of Cry toxins that are used for insect control in the field, such as those of B. thuringiensis subsp. israelensis, should provide targets for improving insecticides against important insect pests. Previous studies showed that Cry11Aa binds to cadherin receptor fragment CR7-11 (cadherin repeats 7-11) with high affinity. Binding to cadherin has been proposed to facilitate Cry toxin oligomer formation. In the present study, we show that Cry4Ba binds to CR7-11 with 9-fold lower binding affinity compared with Cry11Aa. Oligomerization assays showed that Cry4Ba is capable of forming oligomers when proteolytically activated in vitro in the absence of the CR7-11 fragment in contrast with Cry11Aa that formed oligomers only in the presence of CR7-11. Pore-formation assays in planar lipid bilayers showed that Cry4Ba oligomers were proficient in opening ion channels. Finally, silencing the cadherin gene by dsRNA (double-stranded RNA) showed that silenced larvae were more tolerant to Cry11Aa in contrast with Cry4Ba, which showed similar toxic levels to those of control larvae. These findings show that cadherin binding is not a limiting step for Cry4Ba toxicity to A. aegypti larvae.  相似文献   

16.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

17.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

18.
Bacillus thuringiensis Cry protein exerts its toxic effect through a receptor-mediated process. Both aminopeptidases and cadherin proteins were identified as putative Cry1A receptors from Heliothis virescens and Manduca sexta. The importance of cadherin was implied by its correlation with a Cry1Ac resistant H. virescens strain (Gahan, L. J., Gould, F., and Heckel, D. G. (2001) Science 293, 857-860). In this study, the Cry1Ac toxin-binding region in H. virescens cadherin was mapped to a 40-amino-acid fragment, from amino acids 1422 to 1440. This site overlaps with a Cry1Ab toxin-binding site, amino acids 1363-1464 recently reported in M. sexta (Hua, G., Jurat-Fuentes, J. L., and Adang, M. J. (2004) J. Biol. Chem. 279, 28051-28056). Further, feeding of the anti-H. virescens cadherin antiserum or the partial cadherins, which contain the toxin-binding region, in combination with Cry1Ab/Cry1Ac reduced insect mortality by 25.5-55.6% to first instar H. virescens and M. sexta larvae, suggesting a critical function for this cadherin domain in insect toxicity. Mutations in this region, to which the Cry1Ac binds through its loop 3, resulted in the loss of toxin binding. For the first time, we show that the cadherin amino acids Leu(1425) and Phe(1429) are critical for Cry1Ac toxin interaction, and if substituted with charged amino acids, result in the loss of toxin binding, with a K(D) of < 10(-5) m. Mutation of Gln(1430) to an alanine, however, increased the Cry1Ac affinity 10-fold primarily due to an increase on rate. The L1425R mutant can result from a single nucleotide mutation, CTG --> CGG, suggesting that these mutants, which have decreased toxin binding, may lead to Cry1A resistance in insects.  相似文献   

19.
Toxins from Bacillus thuringiensis (Bt) are widely used for pest control. In particular, Bt toxin Cry1Ac produced by transgenic cotton kills some key lepidopteran pests. We found that Cry1Ac binds to recombinant peptides corresponding to extracellular regions of a cadherin protein (BtR) in a major cotton pest, pink bollworm (Pectinophora gossypiella) (PBW). In conjunction with previous results showing that PBW resistance to Cry1Ac is linked with mutations in the BtR gene, the results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW. Similar to other lepidopteran cadherins that bind Bt toxins, BtR has at least two Cry1Ac-binding domains in cadherin-repeat regions 10 and 11, which are immediately adjacent to the membrane proximal region. However, unlike cadherins from Manduca sexta and Bombyx mori, toxin binding was not seen in regions more distal from the membrane proximal region. We also found that both the protoxin and activated toxin forms of Cry1Ac bound to recombinant BtR fragments, suggesting that Cry1Ac activation may occur either before or after receptor binding.  相似文献   

20.
Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号