首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P1-5) or LPA (LPA1-3); two more distantly related receptors are activated by LPA (LPA4/5); the GPR3/6/12 receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca2+ homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.  相似文献   

3.
Signalling     
《Biologia Plantarum》2005,49(1):S14-S19
  相似文献   

4.
Dissimilatory metabolism of nitrate by the rumen microbiota   总被引:5,自引:0,他引:5  
  相似文献   

5.
Nitrate-supported heterotrophic growth ofPhormidium uncinatum was achieved after repeated exposure to glucose in the presence of a photosystem (PS) II inhibitor. Nitrate and glucose utilization as well as activities of their metabolizing enzymes were measured comparatively in photoautotrophic and heterotrophic cells. Nitrate and glucose were taken up together at the ratio of 1:8 (molar basis) and glucose catabolism via glucose-6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH) activities transferred desired electrons for nitrate reduction to ammonia through coupled ferredoxin-NADP+ reductase (FNR) activity. Ammonia thus generated was assimilated mainly by NADPH-glutamate dehydrogenase (GDH) activity. These data demonstrate an operation of nitrate assimilation in this cyanobacterium under heterotrophic conditions.  相似文献   

6.
7.
Recent studies have revealed that Ca2+ not only regulates the contraction of cardiomyocytes, but can also function as a signaling agent to stimulate ATP production by the mitochondria. However, the spatiotemporal resolution of current experimental techniques limits our investigative capacity to understand this phenomenon. Here, we created a detailed three-dimensional (3D) cardiomyocyte model to study the subcellular regulatory mechanisms of myocardial energetics. The 3D cardiomyocyte model was based on the finite-element method, with detailed subcellular structures reproduced, and it included all elementary processes involved in cardiomyocyte electrophysiology, contraction, and ATP metabolism localized to specific loci. The simulation results were found to be reproducible and consistent with experimental data regarding the spatiotemporal pattern of cytosolic, intrasarcoplasmic-reticulum, and mitochondrial changes in Ca2+; as well as changes in metabolite levels. Detailed analysis suggested that although the observed large cytosolic Ca2+ gradient facilitated uptake by the mitochondrial Ca2+ uniporter to produce cyclic changes in mitochondrial Ca2+ near the Z-line region, the average mitochondrial Ca2+ changes slowly. We also confirmed the importance of the creatine phosphate shuttle in cardiac energy regulation. In summary, our 3D model provides a powerful tool for the study of cardiac function by overcoming some of the spatiotemporal limitations of current experimental approaches.  相似文献   

8.
As obesity, diabetes, and associated comorbidities are on a constant rise, large efforts have been put into better understanding the cellular and molecular mechanisms by which nutrients and metabolic signals influence central and peripheral energy regulation. For decades, peripheral organs as a source and a target of such cues have been the focus of study. Their ability to integrate metabolic signals is essential for balanced energy and glucose metabolism. Only recently has the pivotal role of the central nervous system in the control of fuel partitioning been recognized. The rapidly expanding knowledge on the elucidation of molecular mechanisms and neuronal circuits involved is the focus of this review.  相似文献   

9.
Variation in nitrate metabolism in biovars of Pseudomonas solanacearum   总被引:2,自引:0,他引:2  
A collection of 327 strains of Pseudomonas solanacearum , representing five biovars, was divisible into three groups on the basis of differences in nitrate metabolism. Nine strains (2.8%), of which seven were biovar 2 from bacterial wilt of potato, were nitrate reduction-deficient and failed to produce nitrite from nitrate by either of two methods of detection in five different media. A second group of 231 strains, comprising biovars 1 and 2 and a single biovar 3 strain, produced nitrite from nitrate and grew vigorously in the presence of nitrate under anaerobic conditions but were deficient in ability to denitrify. A third group comprising 57 strains of biovar 3, 28 of biovar 4 and one each of biovar 2 and 5 produced nitrite from nitrate and gave profuse growth and gas production from nitrate under anaerobic conditions. However, production of gas from nitrate (denitrification) was not a consistently reproducible property in some of the media tested. Gas production results were most reproducible when a semi-solid succinate/nitrate or glycerol/nitrate medium was used. Serial passage of four nitrate reduction-deficient isolates in nitrate medium did not restore ability to reduce nitrate.  相似文献   

10.
The tolerance of germinating rice seedlings to anaerobiosiscannot be fully accounted for by ethanolic fer mentation alone.Nitrate metabolism (nitrate reduction to NH plus its subsequentassimilation) may provide an additional sink mechanism for excessprotons and NADH produced during anaerobiosis. To follow thefate of nitrate, 15N-labelled nitrate and ammonium incorporationin aerobic and anaerobic rice coleoptiles was examined using15N-edited 1H NMR and gas chromatography-mass spectrometry methods.After 22h of treatments, protein-free Ala, Glu, Gln, and  相似文献   

11.
12.
13.
Inoculation of soybean (Glycine max. cv. Bragg) plants with high level inoculum partially alleviated the nitrate inhibition of nodule formation (3 to 4 fold), but not nodule growth. This alleviation did not require the bacterial nitrate reductase asBradyrhizobium japonicum mutant strains 110CR1 and 110CR2 (both lacking assimilatory nitrate reductase activity) gave the same results as the wild type parent 311b110. The study was carried out in the glasshouse, thereby confirming preliminary field data by Herridgeet al. (1984) using a wild type bacterial inoculant.  相似文献   

14.
Dietary nitrate is metabolized to nitrite by bacterial flora on the posterior surface of the tongue leading to increased salivary nitrite concentrations. In the acidic environment of the stomach, nitrite forms nitrous acid, a potent nitrating/nitrosating agent. The aim of this study was to examine the pharmacokinetics of dietary nitrate in relation to the formation of salivary, plasma, and urinary nitrite and nitrate in healthy subjects. A secondary aim was to determine whether dietary nitrate increases the formation of protein-bound 3-nitrotyrosine in plasma, and if dietary nitrate improves platelet function. The pharmacokinetic profile of urinary nitrate excretion indicates total clearance of consumed nitrate in a 24 h period. While urinary, salivary, and plasma nitrate concentrations increased between 4- and 7-fold, a significant increase in nitrite was only detected in saliva (7-fold). High dietary nitrate consumption does not cause a significant acute change in plasma concentrations of 3-nitrotyrosine or in platelet function.  相似文献   

15.
Signalling help     
《Nature cell biology》2002,4(12):E273
  相似文献   

16.
17.
18.
Metabolic control analysis (MCA) has become what it is, largely because the special organization of living cells led to rather specific questions. These questions focused on the role of enzymes, genes, and, in subsequent generalizations, on well-defined process activities. With an emphasis on the work by Heinrich and co-workers, the theory behind MCA is summarized in a way that leads naturally to its extensions to hierarchical systems, such as gene expression and signal transduction, and to control beyond the steady state. The analysis of the control properties of signal transduction cascades is reviewed with an emphasis on the relative importance of the protein kinases and the protein phosphatases. The two types of enzyme are both important for the amplitude of signal transduction, whereas phosphatases may be more important for the later phases of signal transduction and for its duration. Novel MCA of concentrations and fluxes that vary with time is explicated. It is concluded that the clarity and operationality of concepts such as control strength (now control coefficient) plus the clear theoretical frameworks provided by Heinrich and colleagues, should enable us greatly to reduce the Babylonian confusion that could otherwise occur in the data deluges of Systems Biology.  相似文献   

19.
Cellular Integration of Signalling Pathways in Plant Development (1998). Lo Schiavo F, Last RL, Morelli G, Raikhel NV (Eds). NATO ASI Series. Series H, Cell Biology; Vol. 104. Berlin: Springer-Verlag, DM 198 hardback; ISBN 3 540 64014 2  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号