首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the antioxidant role of peroxiredoxin 6 (Prdx6) in primary lung alveolar epithelial type II cells (AEC II) that were isolated from wild type (WT), Prdx6-/-, or Prdx6 transgenic (Tg) overexpressing mice and exposed to H(2)O(2) at 50-500 microM for 1-24 h. Expression of Prdx6 in Tg AEC II was sevenfold greater than WT. Prdx6 null AEC II exposed to H(2)O(2) showed concentration-dependent cytotoxicity indicated by decreased "live/dead" cell ratio, increased propidium iodide (PI) staining, increased annexin V binding, increased DNA fragmentation by TUNEL assay, and increased lipid peroxidation by diphenylpyrenylphosphine (DPPP) fluorescence. Compared to Prdx6 null cells, oxidant-mediated damage was significantly less in WT AEC II and was least in Prdx6 Tg cells. Thus, Prdx6 functions as an antioxidant enzyme in mouse AEC II. Prdx6 has been shown previously to reduce phospholipid hydroperoxides and we postulate that this activity is a major mechanism for the effectiveness of Prdx6 as an antioxidant enzyme.  相似文献   

2.
Peroxiredoxin-3 (Prdx3) is a mitochondrial member of the antioxidant family of thioredoxin peroxidases that uses mitochondrial thioredoxin-2 (Trx2) as a source of reducing equivalents to scavenge hydrogen peroxide (H(2)O(2)). Low levels of H(2)O(2) produced by the mitochondria regulate physiological processes, including cell proliferation, while high levels of H(2)O(2) are toxic to the cell and cause apoptosis. WEHI7.2 thymoma cells with stable overexpression of Prdx3 displayed decreased levels of cellular H(2)O(2) and decreased cell proliferation without a change in basal levels of apoptosis. Prdx3-transfected cells showed a marked resistance to hypoxia-induced H(2)O(2) formation and apoptosis. Prdx3 overexpression also protected the cells against apoptosis caused by H(2)O(2), t-butylhydroperoxide, and the anticancer drug imexon, but not by dexamethasone. Thus, mitochondrial Prdx3 is an important cellular antioxidant that regulates physiological levels of H(2)O(2), leading to decreased cell growth while protecting cells from the apoptosis-inducing effects of high levels of H(2)O(2).  相似文献   

3.
Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice (Ucp3-/-), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3-/- mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3-/- mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-D-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3-/- mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3-/- mice. When challenged with a 45% fat diet, Ucp3-/- mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.  相似文献   

4.
Yang S  Luo A  Hao X  Lai Z  Ding T  Ma X  Mayinuer M  Shen W  Wang X  Lu Y  Ma D  Wang S 《Biology of reproduction》2011,84(6):1182-1189
Peroxiredoxin 2 (PRDX2) has been known to act as an antioxidant enzyme whose main function is H(2)O(2) reduction in cells. We aimed to study the expression patterns of PRDX2 in mouse ovaries and explore the function of this protein in apoptosis of granulosa cells (GCs). We found that the expression of the PRDX2 protein in atretic follicle GCs was markedly higher than in healthy follicle GCs. In vitro, the transfection of siRNA targeting the Prdx2 gene inhibited the proliferation and induced the apoptosis of primary cultured GCs. Furthermore, suppression of PRDX2 resulted in the augmentation of endogenous H(2)O(2), and the ability to eliminate the exogenous H(2)O(2) was attenuated. The expression of PRDX2 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), whose activity was inhibited by binding to IKB, increased in GCs treated with various concentrations of H(2)O(2) for 30 min. However, no significant change in cytoplasmic IKB expression was observed. At 2 h after treatment with H(2)O(2), nuclear NFKB expression level was reduced, cytoplasmic IKB expression was increased, and PRDX2 expression was unchanged. Silencing of the Prdx2 gene caused early changes in NFKB and IKB expression in the primary cultured GCs compared to that in control cells. Taken together, these data suggest that PRDX2 plays an important role in inhibiting apoptosis in GCs and that PRDX2 actions may be related to the expression of NFKB and IKB.  相似文献   

5.
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.  相似文献   

6.
Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase (GPx) and iPLA2 activities. Even though several pathophysiological functions have been studied, the definitive role of PRDX6 in tumor growth is not clear. Here, we compared carcinogen-induced tumor growth in PRDX6-transgenic (Tg) mice and non-Tg mice to evaluate the roles of PRDX6 in lung tumor development. Urethane (1 g/kg)-induced tumor incidence in PRDX6-Tg mice was significantly higher compared to non-Tg mice. In the tumors of PRDX6-Tg mice, the activation of JAK2/STAT3 and STAT3 DNA binding were also increased, accompanied by increased GPx and iPLA2 activities. PRDX6 was colocalized with JAK2 in tumor tissues and lung cancer cells and also showed physical interaction with JAK2. We found that increasing levels of PRDX6 increase the activation of the JAK2/STAT3 pathway. Furthermore, PRDX6-Tg mice showed altered cytokine levels in the tumors, especially leading to increased CCL5 levels. We validated that the activation of JAK2 was also decreased in lung tumors of CCR5−/− mice, and CCL5 increased the JAK2/STAT3 pathway in the lung cancer cells. Thus, our findings suggest that PRDX6 promotes lung tumor development via its mediated and CCL5-associated activation of the JAK2/STAT3 pathway.  相似文献   

7.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

8.
This study compared lung tumor growth in PRDX6-overexpressing transgenic (Tg) mice and normal mice. These mice expressed elevated levels of PRDX6 mRNA and protein in multiple tissues. In vivo, Tg mice displayed a greater increase in the growth of lung tumor compared with normal mice. Glutathione peroxidase and calcium-independent phospholipase 2 (iPLA2) activities in tumor tissues of Tg mice were much higher than in tumor tissues of normal mice. Higher tumor growth in PRDX6-overexpressing Tg mice was associated with an increase in activating protein-1 (AP-1) DNA-binding activity. Moreover, expression of proliferating cell nuclear antigen, Ki67, vascular endothelial growth factor, c-Jun, c-Fos, metalloproteinase-9, cyclin-dependent kinases, and cyclins was much higher in the tumor tissues of PRDX6-overexpressing Tg mice than in tumor tissues of normal mice. However, the expression of apoptotic regulatory proteins including caspase-3 and Bax was slightly less in the tumor tissues of normal mice. In tumor tissues of PRDX6-overexpressing Tg mice, activation of mitogen-activated protein kinases (MAPKs) was much higher than in normal mice. In cultured lung cancer cells, PRDX6 siRNA suppressed glutathione peroxidase and iPLA2 activities and cancer cell growth, but the enforced overexpression of PRDX6 increased cancer cell growth associated with their increased activities. In vitro, among the tested MAPK inhibitors, c-Jun NH2-terminal kinase (JNK) inhibitor clearly suppressed the growth of lung cancer cells and AP-1 DNA binding, glutathione peroxidase activity, and iPLA2 activity in normal and PRDX6-overexpressing lung cancer cells. These data indicate that overexpression of PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities through the upregulation of the AP-1 and JNK pathways.  相似文献   

9.
Skeletal muscle mitochondrial dysfunction has been linked to several disease states as well as the process of aging. A possible factor involved is the peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), a major player in the regulation of skeletal muscle mitochondrial metabolism. However, it is currently unknown whether PGC-1α, besides stimulating mitochondrial proliferation, also affects the functional capacity per mitochondrion. Therefore, we here tested whether PGC-1α overexpression, besides increasing mitochondrial content, also leads to intrinsic mitochondrial adaptations. Skeletal muscle mitochondria from 10 male, muscle-specific PGC-1α overexpressing mice (PGC-1αTg) and 8 wild-type (WT) mice were isolated. Equal mitochondrial quantities were then analyzed for their oxidative capacity by high-resolution respirometry, fuelled by a carbohydrate-derived (pyruvate) and a lipid (palmitoyl-CoA plus carnitine) substrate. Additionally, mitochondria were tested for reactive oxygen species (superoxide) production and fatty acid (FA)-induced uncoupling. PGC-1αTg mitochondria were characterized by an improved intrinsic mitochondrial fat oxidative capacity as evidenced by pronounced increase in ADP-stimulated respiration (P < 0.001) and maximal uncoupled respiration (P < 0.001) upon palmitoyl-CoA plus carnitine. Interestingly, intrinsic mitochondrial capacity on a carbohydrate-derived substrate tended to be reduced. Furthermore, the sensitivity to FA-induced uncoupling was diminished in PGC-1αTg mitochondria (P = 0.02) and this was accompanied by a blunted reduction in mitochondrial ROS production upon FAs in PGC-1αTg versus WT mitochondria (P = 0.04). Uncoupling protein 3 (UCP3) levels were markedly reduced in PGC-1αTg mitochondria (P < 0.001). Taken together, in addition to stimulating mitochondrial proliferation in skeletal muscle, we show here that overexpression of PGC-1α leads to intrinsic mitochondrial adaptations that seem restricted to fat metabolism.  相似文献   

10.
Hydrogen peroxide (H(2)O(2)) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H(2)O(2) in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H(2)O(2) levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H(2)O(2) to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H(2)O(2) that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H(2)O(2) with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H(2)O(2) correlates with aging, it may not be causative.  相似文献   

11.
HepG2 cells were transfected with vectors containing human catalase cDNA and catalase cDNA with a mitochondrial leader sequence to allow comparison of the effectiveness of catalase overexpressed in the cytosolic or mitochondrial compartments to protect against oxidant-induced injury. Overexpression of catalase in cytosol and in mitochondria was confirmed by Western blot, and activity measurement and stable cell lines were established. The intracellular level of H(2)O(2) induced by exogenously added H(2)O(2) or antimycin A was lower in C33 cell lines overexpressing catalase in the cytosol and mC5 cell lines overexpressing catalase in the mitochondria as compared with Hp cell lines transfected with empty vector. Cell death caused by H(2)O(2), antimycin A, and menadione was considerably suppressed in both the mC5 and C33 cell lines. C33 and mC5 cells were also more resistant to apoptosis induced by H(2)O(2) and to the loss of mitochondrial membrane potential induced by H(2)O(2) and antimycin A. In view of the comparable protection by catalase overexpressed in the cytosol versus the mitochondria, catalase produced in both cellular compartments might act as a sink to decompose H(2)O(2) and move diffusable H(2)O(2) down its concentration gradient. The present study suggests that catalase in cytosol and catalase in mitochondria are capable of protecting HepG2 cells against cytotoxicity or apoptosis induced by oxidative stress.  相似文献   

12.
Uncoupling protein 3 (UCP3) is suggested to protect mitochondria against aging and lipid-induced damage, possibly via modulation of reactive oxygen species (ROS) production. Here we show that mice overexpressing UCP3 (UCP3Tg) have a blunted age-induced increase in ROS production, assessed by electron spin resonance spectroscopy, but only after addition of 4-hydroxynonenal (4-HNE). Mitochondrial function, assessed by respirometry, on glycolytic substrate was lower in UCP3Tg mice compared to wild types, whereas this tended to be higher on fatty acids. State 4o respiration was higher in UCP3Tg animals. To conclude, UCP3 overexpression leads to increased state 4o respiration and, in presence of 4-HNE, blunts the age-induced increase in ROS production.  相似文献   

13.
Previous data have demonstrated that, to handle the oxidative stress encountered with training at high intensity, skeletal muscle relies on an increase in mitochondrial biogenesis, a reduced H(2)O(2) production, and an enhancement of antioxidant enzymes. In the present study, we evaluated the influence of voluntary running on mitochondrial O(2) consumption and H(2)O(2) production by intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) isolated from oxidative muscles in conjunction with the determination of antioxidant capacities. When mitochondria are incubated with succinate as substrate, both maximal (state 3) and resting (state 4) O(2) consumption were significantly lower in SSM than in IFM populations. Mitochondrial H(2)O(2) release per unit of O(2) consumed was 2-fold higher in SSM than in IFM. Inhibition of H(2)O(2) formation by rotenone suggests that complex I of the electron transport chain is likely the major physiological H(2)O(2)-generating system. In Lou/C rats (an inbred strain of rats of Wistar origin), neither O(2) consumption nor H(2)O(2) release by IFM and SSM were affected by long-term, voluntary wheel training. In contrast, glutathione peroxidase and catalase activity were significantly increased despite no change in oxidative capacities with long-term, voluntary exercise. Furthermore, chronic exercise enhanced heat shock protein 72 accumulation within skeletal muscle. It is concluded that the antioxidant status of muscle can be significantly improved by prolonged wheel exercise without necessitating an increase in mitochondrial oxidative capacities.  相似文献   

14.
Reactive oxygen species, especially hydrogen peroxide, are important in cellular signal transduction. However, excessive amounts of these species damage tissues and cells by oxidizing virtually all important biomolecules. Peroxiredoxin 6 (PRDX6) (also called antioxidant protein 2, or AOP2) is a novel peroxiredoxin family member whose function in vivo is unknown. Through immunohistochemistry, we have determined that the PRDX6 protein was widely expressed in every tissue examined, most abundantly in epithelial cells. It was found in cytosol, but not in membranes, organelles, and nuclei fractions. Prdx6 mRNA was also expressed in every tissue examined. The widespread expression of Prdx6 suggested that its functions were quite important. To determine these functions, we generated Prdx6-targeted mutant (Prdx6-/-) mice, confirmed the gene disruption by Southern blots, PCR, RT-PCR, Western blots, and immunohistochemistry, and compared the effects of paraquat, hydrogen peroxide, and t-butyl hydroperoxide on Prdx6-/- and wild-type (Prdx6+/+) macrophages, and of paraquat on Prdx6-/- and Prdx6+/+ mice. Prdx6-/- macrophages had higher hydrogen peroxide levels, and lower survival rates; Prdx6-/- mice had significantly lower survival rates, more severe tissue damage, and higher protein oxidation levels. Additionally, there were no differences in the mRNA expression levels of other peroxiredoxins, glutathione peroxidases, catalase, superoxide dismutases, thioredoxins, and glutaredoxins between normal Prdx6-/- and Prdx6+/+ mice and those injected with paraquat. Our study provides in vivo evidence that PRDX6 is a unique non-redundant antioxidant that functions independently of other peroxiredoxins and antioxidant proteins.  相似文献   

15.
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase activity and Ca2+-independent phospholipase A2 (iPLA2) activity. Here, we report that H2O2-induced cellular toxicity acts through Prdx6 hyperoxidation. Under high concentrations of H2O2 (> 100 microm), Prdx6, and 2-Cys Prdxs were hyperoxidized. Contrary to hyperoxidation of 2-Cys Prdxs, hyperoxidation of Prdx6 was irreversible in vivo. Surprisingly, H2O2-induced cell cycle arrest at the G2/M transition correlated with hyperoxidation and increased iPLA2 activity of Prdx6. This arrest was also associated with up-regulation of p53 and p21 and with down-regulation of cyclin B1. Furthermore, the H2O2-mediated increase in iPLA2 activity was dramatically abolished in a hyperoxidation mutant (C47A), an iPLA2 mutant (S32A), and a double mutant (C47A/S32A) of Prdx6, demonstrating the essential requirement of Prdx6 C47 hyperoxidation for its iPLA2 activity. Together, our results demonstrate that H2O2-mediated hyperoxidation of Prdx6 induces cell cycle arrest at the G2/M transition through up-regulation of iPLA2 activity.  相似文献   

16.
Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe ?/? mice transplanted with bone marrow from prdx1?/?apoe?/? mice had increased plaque formation compared with apoe?/? BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.  相似文献   

17.
Hepatitis B is the most common and serious liver disease, especially in developing countries. Although HBV pathogenesis has been extensively investigated, the proteomic alteration of hepatocytes during HBV chronic infection is still unclear. Using the purified hepatocytes, we compared the protein profiles by 2‐DE and LC‐MS between HBV‐transgenic (Tg) and corresponding background mice. Twenty‐seven altered proteins were identified in hepatocytes from HBV‐Tg mice, among which 13 proteins were involved in mitochondrion metabolism pathway including tricarboxylic acid (TCA) cycle and oxidative response; four proteins (SELENBP, SCP2, RGN and PRDX1) were also dramatically changed in liver samples from HBV‐infected patients. Important genes (gpx, sod, ogg et al.) correlated to oxidative damage were up‐regulated in the liver of HBV‐Tg mice. Reactive oxygen species production was significantly increased while ATP production was decreased in liver mitochondria from HBV‐Tg mice. Moreover, hepatocytes of HBV‐Tg mice were more sensitive to hydrogen peroxide‐induced cell death than that of wild‐type control. Using 2‐D Western blotting analysis, eight hepatocyte proteins were found to react with sera of HBV‐Tg mice but not with that of background mice. Interestingly, two (Etfa and Dmgdh) of the eight reactive proteins were overexpressed in HBV‐Tg mice. We believe this study is the first proteomic and seroproteome analysis of HBV‐infected mammalian hepatocyte and provides insightful links between HBV infection and HBV‐induced liver diseases.  相似文献   

18.
Patients with severe COPD are known to have comorbidities such as emaciation, cor pulmonale and right heart failure, muscle weakness, hyperlipemia, diabetes mellitus, osteoporosis, muscle atrophy, arterial sclerosis, hypertension, and depression. Therefore, treatment for COPD needs to focus on these comorbidities as well as the lungs. We previously reported a new mouse model of COPD utilizing the human surfactant protein C promoter SP-C to drive the expression of mature mouse IL-18 cDNA; constitutive IL-18 overproduction in the lungs of transgenic (Tg) mice induces severe emphysematous change, dilatation of the right ventricle, and mild pulmonary hypertension with aging. In the present study, we evaluated the progression of comorbidity in our COPD model. In female Tg mice, significant weight loss was observed at 16 weeks and beyond, when compared with control wild-type (WT) mice. This weight loss was suppressed in IL-13-deficient (knockout; KO) Tg mice. Muscle weight and bone mineral density were significantly decreased in aged Tg mice relative to control WT and IL-13 KO Tg mice. The aged Tg mice also showed impaired glucose tolerance. IL-18 and IL-13 may play important roles in the pathogenesis of comorbidity in COPD patients.  相似文献   

19.
Nicotinamide adenine dinucleotide (NAD) is an important cofactor that regulates various biological processes, including metabolism and gene expression. As a coenzyme, NAD controls mitochondrial respiration through enzymes of the tricarboxylic acid (TCA) cycle, β‐oxidation, and oxidative phosphorylation and also serves as a substrate for posttranslational protein modifications, such as deacetylation and ADP‐ribosylation by sirtuins and poly(ADP‐ribose) polymerase (PARP), respectively. Many studies have demonstrated that NAD levels decrease with aging and that these declines cause various aging‐associated diseases. In contrast, activation of NAD metabolism prevents declines in NAD levels during aging. In particular, dietary supplementation with NAD precursors has been associated with protection against age‐associated insulin resistance. However, it remains unclear which NAD synthesis pathway is important and/or efficient at increasing NAD levels in vivo. In this study, Nmnat3 overexpression in mice efficiently increased NAD levels in various tissues and prevented aging‐related declines in NAD levels. We also demonstrated that Nmnat3‐overexpressing (Nmnat3 Tg) mice were protected against diet‐induced and aging‐associated insulin resistance. Moreover, in skeletal muscles of Nmnat3 Tg mice, TCA cycle activity was significantly enhanced, and the energy source for oxidative phosphorylation was shifted toward fatty acid oxidation. Furthermore, reactive oxygen species (ROS) generation was significantly suppressed in aged Nmnat3 Tg mice. Interestingly, we also found that concentrations of the NAD analog nicotinamide guanine dinucleotide (NGD) were dramatically increased in Nmnat3 Tg mice. These results suggest that Nmnat3 overexpression improves metabolic health and that Nmnat3 is an attractive therapeutic target for metabolic disorders that are caused by aging.  相似文献   

20.
The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号