首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the complete sequence of the rat mitochondrial malate dehydrogenase (mMDH) precursor derived from nucleotide sequence of the cDNA. A single synthetic oligodeoxynucleotide probe was used to screen a rat atrial cDNA library constructed in lambda gt10. A 1.2 kb full-length cDNA clone provided the first complete amino acid sequence of pre-mMDH. The 1014 nucleotide-long open reading frame encodes the 314 residue long mature mMDH protein and a 24 amino acid NH2-terminal extension which directs mitochondrial import and is cleaved from the precursor after import to generate mature mMDH. The amino acid composition of the transit peptide is polar and basic. The pre-mMDH transit peptide shows marked homology with those of two other enzymes targeted to the rat mitochondrial matrix.  相似文献   

2.
Gietl C 《Plant physiology》1992,100(2):557-559
Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extension that is cleaved off in connection with the import of the enzyme precursor into the organelle. The sequence of the 27 amino acids of the mitochondrial transit peptide is unrelated to the 37-residue glyoxysomal transit peptide, which in turn is entirely different in sequence from the 57-residue chloroplastic transit peptide. With the exception of malate dehydrogenase and 3-ketoacyl thiolase, peroxisomal enzymes are synthesized without transit peptides and are frequently translocated into the organelle with a peroxisomal targeting signal consisting of a conserved tripeptide at the carboxy terminus of the protein. Based on the observation that this tripeptide (Ala-His-Leu) occurs in the transit peptides of glyoxysomal malate dehydrogenase and peroxisomal 3-ketoacyl thiolase, the possible significance of amino terminal transit peptides for peroxisome import is discussed.  相似文献   

3.
We have investigated the function of a leucine residue in the transit peptide of the rat mitochondrial malate dehydrogenase precursor using in vitro mutagenesis. Amino acid replacement of leucine 13 with glutamic acid and asparagine abolished import into mitochondria, while substitutions with proline, histidine, and arginine severely diminished uptake. In contrast, glutamine, tyrosine, valine, and alanine replacement resulted in normal levels of import, suggesting that there is a requirement for an uncharged residue at this position. Mutants involving rearrangements of the native sequence at positions 12-14 were imported as efficiently as the wild-type mitochondrial malate dehydrogenase, indicating that there was not an obligatory order of amino acid residues. However, deletion of leucine 13 resulted in diminished import. Binding studies with isolated mitochondria revealed that several position 13 mutants were deficient in binding to the mitochondrial surface, accounting for the reduced import of these proteins. This impairment could be distinguished from the effects due to decreased positive charge. We conclude that while translocation depends on the net positive charge, binding to the mitochondrial surface is mediated by uncharged residues within the transit peptides of mitochondrial precursor proteins.  相似文献   

4.
A typical soybean (Glycine max) plant assimilates nitrogen rapidly both in active root nodules and in developing seeds and pods. Oxaloacetate and 2-ketoglutarate are major acceptors of ammonia during rapid nitrogen assimilation. Oxaloacetate can be derived from the tricarboxylic acid (TCA) cycle, and it also can be synthesized from phosphoenolpyruvate and carbon dioxide by phosphoenolpyruvate carboxylase. An active malate dehydrogenase is required to facilitate carbon flow from phosphoenolpyruvate to oxaloacetate. We report the cloning and sequence analyses of a complete and novel malate dehydrogenase gene in soybean. The derived amino acid sequence was highly similar to the nodule-enhanced malate dehydrogenases from Medicago sativa and Pisum sativum in terms of the transit peptide and the mature subunit (i.e., the functional enzyme). Furthermore, the mature subunit exhibited a very high homology to the plastid-localized NAD-dependent malate dehydrogenase from Arabidopsis thaliana, which has a completely different transit peptide. In addition, the soybean nodule-enhanced malate dehydrogenase was abundant in both immature soybean seeds and pods. Only trace amounts of the enzyme were found in leaves and nonnodulated roots. In vitro synthesized labeled precursor protein was imported into the stroma of spinach chloroplasts and processed to the mature subunit, which has a molecular mass of ~34 kDa. We propose that this new malate dehydrogenase facilitates rapid nitrogen assimilation both in soybean root nodules and in developing soybean seeds, which are rich in protein. In addition, the complete coding region of a geranylgeranyl hydrogenase gene, which is essential for chlorophyll synthesis, was found immediately upstream from the new malate dehydrogenase gene.  相似文献   

5.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

6.
Arginine residues in the transit peptides of mitochondrial precursors are proposed to be important for uptake into mitochondria. To study this further, we have used cassette mutagenesis to create site-specific amino acid replacements within the transit peptide of rat mitochondrial malate dehydrogenase. Plasmids containing mutant sequences were expressed in vitro and tested in a mitochondrial uptake system utilizing isolated rat liver mitochondria. Substitution for arginine at position 14 with asparagine, glutamine, or alanine decreased the relative import level by 20-30% compared to the wild-type sequence when assayed in 1-h uptake experiments. Although lysine substitution did not alter import, substitution with glutamic acid decreased import by 40%. Alanine substitution for arginines at both positions 14 and 15 also dramatically decreased import. Uptake was partially restored in this mutant when positive charge was inserted at a new location within the transit peptide. Time course experiments showed that the initial rates of import were decreased in these mutants, as were the relative amounts of incorporated protein. These results were best explained by the loss of positive charge following amino acid substitutions for the arginine residues and suggest that the role of the charge is to enhance the efficiency of membrane translocation.  相似文献   

7.
Pig heart citrate synthase and mitochondrial malate dehydrogenase interact in polyethylene glycol solutions as indicated by increased solution turbidity. A large percentage of both enzymes sediments when mixtures of the two in polyethylene glycol are centrifuged, whereas little if any of either enzyme sediments in the absence of the other. The observed interaction is highly specific in that neither cytosolic malate dehydrogenase nor nine other proteins showed evidence of specific interaction with either pig heart citrate synthase or mitochondrial malate dehydrogenase. Escherichia coli citrate synthase did not interact with pig heart citrate synthase, but did show evidence of interaction with pig heart mitochondrial malate dehydrogenase. The relation between enzyme behavior in polyethylene glycol solution and in the mitochondrion and the significance of possible in vivo interactions between citrate synthase and mitochondrial malate dehydrogenase are discussed.  相似文献   

8.
Attempts to produce hybrids of pig heart supernatant and mitochondrial malate dehydrogenase with the use of guanidine hydrochloride, acid treatment, and freezethaw techniques have been unsuccessful. However, the freeze-thaw technique produced a catalytically active higher molecular weight form of supernatant malate dehydrogenase in the absence or presence of mitochondrial enzyme. The higher molecular weight of this artifact was established by gel filtration and gel electrophoresis criteria. The specific activity of the artifactual form of the enzyme appears to be close to that of native supernatant malate dehydrogenase.  相似文献   

9.
The amino acid sequence of D-beta-hydroxybutyrate dehydrogenase (BDH), a phosphatidyl-choline-dependent enzyme, has been determined for the enzyme from rat liver by a combination of nucleotide sequencing of cDNA clones and amino acid sequencing of the purified protein. This represents the first report of the primary structure of this enzyme. The largest clone contained 1435 base pairs and encoded the entire amino acid sequence of mature BDH and the leader peptide of precursor BDH. Hybridization of poly(A+) rat liver mRNA revealed two bands with estimated sizes of 3.2 and 1.7 kb. A computer-based comparison of the amino acid sequence of BDH with other reported sequences reveals a homology with the superfamily of short-chain alcohol dehydrogenases, which are distinct from the classical zinc-dependent alcohol dehydrogenases. This protein family, initially discerned from Drosophila alcohol dehydrogenase and bacterial ribitol dehydrogenase, is now known to include at least 20 enzymes catalyzing oxidations of distinct substrates.  相似文献   

10.
11.
We have demonstrated that a synthetic peptide corresponding to the rat mitochondrial malate dehydrogenase (mMDH) transit peptide (TP-28) inhibits the binding of pre-mMDH to isolated mitochondria. Synthetic peptides derived from chloroplast transit peptide sequences, which have a similar net charge, did not inhibit import. In addition, this peptide (TP-28) inhibits import of ornithine transcarbamylase, another mitochondrial matrix protein, thus suggesting that common import pathways exist for both mMDH and ornithine transcarbamylase. A smaller synthetic peptide corresponding to residues 1-20 of the mMDH transit peptide (TP-20) also inhibits binding. However, several substitutions for leucine-13 in the smaller peptide relieve import inhibition, thus providing evidence that this neutral residue plays a crucial role in transit peptide binding to the mitochondrial surface. Proteolytic processing of pre-mMDH by a mitochondrial matrix fraction to both the mature and intermediate forms of mMDH was also inhibited by TP-28. The ability of synthetic peptides to inhibit distinct steps in the import of mitochondrial precursor proteins corresponds precisely to their ability to interact with the same components used by transit peptides on intact precursors. Furthermore, inhibition at multiple points along the import pathway reflects the functions of several independent structures contained within transit peptides.  相似文献   

12.
13.
The sequences of the coenzyme-binding peptide of both cytoplasmic and mitochondrial aspartate aminotransferases from sheep liver were determined. The holoenzymes were treated with NaBH4 and digested with chymotrypsin; peptides containing bound pyridoxal phosphate were then isolated. One phosphopyridoxyl peptide was obtained from sheep liver cytoplasmic aspartate aminotransferase. Its sequence was Ser-Ne-(phosphopyridoxyl)-Lys-Asn-Phe. This sequence is identical with that reported for the homologous peptide from pig heart cytoplasmic aspartate aminotransferase. Two phosphopyridoxyl peptides with different RF values were isolated from the sheep liver mitochondrial isoenzyme. They had the same N-terminal amino acid and similar amino acid composition. The mitochondrial phosphopyridoxyl peptide of highest yield and purity had the sequence Ala-Ne-(phosphopyridoxyl)-Lys-Asx-Met-Gly-Leu-Tyr. The sequence of the first four amino acids is identical with that already reported for the phosphopyridoxyl tetrapeptide from the pig heart mitochondrial isoenzyme. The heptapeptide found for the sheep liver mitochondrial isoenzyme closely resembles the corresponding sequence taken from the primary structure of the pig heart cytoplasmic aspartate aminotransferase.  相似文献   

14.
The reversible inactivation of porcine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate yields an irreversible modification upon sodium borohydride reduction. A 200-fold molar excess of pyridoxal-5'-P over enzyme results in inactivation to the extent of 54%, and incorporation of 5.7 mol of inactivator per mol of enzyme. The same inactivation carried out in the presence of 80 mM coenzyme, NADH, produces malate dehydrogenase which is approximately 94% active and contains 4.6 mol of pyridoxal-5'-P per mol of enzyme. The incorporation difference between inactivated and protected samples suggests, for total inactivation, the modification of 2 residues per mol of enzyme (i.e. 1 residue per subunit, or 1 per enzymatic active site). This specificity was confirmed by the isolation of a single pyridoxyl-5'-P-labeled "difference peptide" obtained by comparison of the Dowex 1-X2 elution profiles of tryptic digests of protected and inactivated samples, respectively. Amino acid analysis of the peptide demonstrated the presence of N6-pyridoxyl-L-lysine (Lys(Pyx)), establishing the existence of an essential lysing residue in the active center of malate dehydrogenase. The amino acid sequence of the active center hexapeptide has been determined to be: H2NLys(Pyx)Pro-Gly-Met-Thr-Arg-COOH.  相似文献   

15.
In extension of a previous study with yeast glucose-6-P dehydrogenase (Kawaguchi, A., and Bloch, K. (1974) J. Biol. Chem. 249, 5793-5800), the structural changes accompanying the inhibition of glutamate dehydrogenase and several malate dehydrogenases by palmitoyl-CoA and by sodium dodecyl sulfate have been investigated. Palmitoyl-CoA converts liver glutamate dehydrogenase to enzymatically inactive dimeric subunits (Mr = 1.2 X 10(5)) and tightly binds to the dissociated enzyme. Removal of the inhibitor from the palmitoyl-CoA-dimer complex fails to regenerate enzyme activity. The Ki values for palmitoyl-CoA inhibition of malate dehydrogenases (oxalacetate reduction) are, for the enzyme from pig heart mitochondria, 1.8 muM, 500 muM from pig heart supernatant, and 10 muM from chicken heart supernatant. These inhibitions are readily reversible. Palmitoyl-CoA does not alter the quaternary structure of any of the malate dehydrogenases and binds only weakly to these enzymes. Mitochondrial malate dehydrogenase assayed in the direction malate to oxalacetate is much less sensitive to palmitoyl-CoA, with Ki values of 50 muM at pH 10 and greater than 50 muM at pH 7.4. While the differences in palmitoyl-CoA sensitivity in the forward and backward reactions catalyzed by mitochondrial dehydrogenase are unexplained, a physiological rationale for these differential effects is offered. Sodium dodecyl sulfate dissociates the various dehydrogenases to monomeric subunits in contrast to the more selective effects of palmitoyl-CoA.  相似文献   

16.
The nucleotide sequence of the mRNA coding for the precursor of mitochondrial serine:pyruvate aminotransferase of rat liver was determined from those of cDNA clones. The mRNA comprises at least 1533 nucleotides, except the poly(A) tail, and encodes a polypeptide consisting of 414 amino acid residues with a molecular mass of 45,834 Da. Comparison of the N-terminal amino acid sequence of mitochondrial serine:pyruvate aminotransferase with the nucleotide sequence of the mRNA showed that the mature form of the mitochondrial enzyme consisted of 390 amino acid residues of 43,210 Da. The amino acid composition of mitochondrial serine:pyruvate aminotransferase deduced from the nucleotide sequence of the cDNA showed good agreement with the composition determined on acid hydrolysis of the purified protein. The extra 24 amino acid residues correspond to the N-terminal extension peptide (pre-sequence) that is indispensable for the specific import of the precursor protein into mitochondria. In the extension peptide there are four basic amino acids distributed among hydrophobic amino acids and, as revealed on helical wheel analysis, the putative alpha-helical structure of the peptide was amphiphilic in nature. The secondary structures of the mature serine:pyruvate aminotransferase and three other aminotransferases of rat liver were predicted from their amino acid sequences. Their secondary structures exhibited a common feature and so we propose the specific lysine residue which binds pyridoxal phosphate as the active site of serine:pyruvate aminotransferase.  相似文献   

17.
Trypanosoma cruzi, the protozoan parasite causing Chagas disease, contains a novel aromatic alpha-hydroxy acid dehydrogenase. This enzyme is responsible, together with tyrosine aminotransferase, for the catabolism of aromatic amino acids, which leads to the excretion of aromatic lactate derivatives into the culture medium. The gene encoding the aromatic alpha-hydroxy acid dehydrogenase has been cloned through a combined approach using screening of an expression genomic library with antibodies, peptide sequencing and PCR amplification. Its sequence shows high similarity to the cytosolic malate dehydrogenases. However, the enzyme has no malate dehydrogenase activity. The gene seems to be present in a single copy per haploid genome and is differentially expressed throughout the parasite's life cycle, the highest levels being found in the insect forms of T. cruzi. The purified recombinant enzyme, expressed in Escherichia coli, was unable to reduce oxaloacetate and had kinetic constants similar to those of the natural aromatic alpha-hydroxy acid dehydrogenase. Sequence comparisons suggest that the aromatic alpha-hydroxy acid dehydrogenase derives from a cytosolic malate dehydrogenase no longer present in the parasite, made redundant by the presence of a glycosomal malate dehydrogenase as a member of a shuttle device involving the mitochondrial isoenzyme.  相似文献   

18.
The cDNA coding for the signal peptide of rat liver mitochondrial aldehyde dehydrogenase was sequenced. The deduced amino acid sequence of the signal peptide was MLRAALSTARRGPRLSRLL. From this sequence an amphiphilic helix which had a high hydrophobic moment could be constructed. A comparison to the published cDNA sequence of human mitochondrial aldehyde dehydrogenase revealed great sequence identity and allowed us to make some predictions regarding the primary structure of the human signal peptide.  相似文献   

19.
A method has been devised for the rapid isolation of malate dehydrogenase isoenzymes. First, anionic proteins were precipitated with polyethyleneimine, whilst hydrophobic malate dehydrogenase remained in the supernatant fluid. Secondly, the supernatant was 30% saturated with ammonium sulfate and the two isoenzymes were separated by hydrophobic phenyl-Sepharose CL-4B chromatography. For further purification the enzymes were chromatofocused, and polybuffer was removed by hydrophobic chromatography. Affinity chromatography with blue Sepharose CL-6B [1] was used as final purification step. The purified isoenzymes were homogeneous as shown by isoelectric focusing and could be used for N-terminal sequencing. 34 amino acid residues could be identified for the cytoplasmic isoenzyme and 56 amino acid residues for the mitochondrial isoenzyme. Although there are regions of strong homology between both isoenzymes, the sequence differences clearly showed support that both isoenzymes are coded by different genes. Sequence comparison clearly indicated that the N-terminus of the cytoplasmic enzyme extended that of the mitochondrial enzyme by 12 amino acid residues. The amino acid sequence of the extending sequence resembled that of leading sequences known for enzymes which are transported into the mitochondria. The assumed leading sequence is discussed with respect to its possible role in glucose inactivation.  相似文献   

20.
N-terminus amino acid analysis of purified corn (Zea mays) NADP malate dehydrogenase showed that the mature protein begins at serine-41 of the preprotein sequence and not threonine-58 as previously concluded; therefore, the transit peptide consists of 40 amino acids. The theoretical molecular weight of the mature subunit protein (392 amino acids) is 42,564, agreeing with an experimental value of about 43,000. The molecular weight of the native unactivated (dark form) and activated (light form) of NADP malate dehydrogenase, determined by analytical ultracentrifugation analysis, was about 84,000, indicating that both forms are dimers. However, conventional and high performance liquid chromatography gel filtration procedures indicated apparent molecular weights of about 110,000 to 120,000 for the unactivated native enzyme and about 143,000 to 150,000 for the active enzyme; in these cases, the molecular weight may be overestimated due to the effect of an unusual molecular conformation on the mobility of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号