首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
In vitro recombination of homologous genes (family shuffling) has been proposed as an effective search strategy for laboratory evolution of genes and proteins. Few data are available, however, on the composition of shuffled gene libraries, from which one could assess the efficiency of recombination and optimize protocols. Here, probe hybridization is used in a macroarray format to analyze chimeric DNA libraries created by DNA shuffling. Characterization of hundreds of shuffled genes encoding dioxygenases has elucidated important biases in the shuffling reaction. As expected, crossovers are favored in regions of high sequence identity. A sequence-based model of homologous recombination that captures this observed bias was formulated using the experimental results. The chimeric genes were found to show biases in the incorporation of sequences from certain parents, even before selection. Statistically different patterns of parental incorporation in genes expressing functional proteins can help to identify key sequence-function relationships.  相似文献   

2.
In vitro evolution is a new, important laboratory method to evolve molecules with desired properties. It has been used in a variety of biological studies and drug development. In this paper, we study one important mutagenesis method used in in vitro evolution experiments called DNA shuffling. We construct a mathematical model for DNA shuffling and study the properties of molecules after DNA shuffling experiments based on this model. The model for DNA shuffling consists of two parts. First we apply the Lander-Waterman model for physical mapping by fingerprinting random clones to model the distribution of regions that can be reassembled through DNA shuffling. Then we present a model for recombination between different DNA species with different mutations. We compare our theoretical results with experimental data. Finally we propose novel applications of the theoretical results to the optimal design of DNA shuffling experiments and to physical mapping using DNA shuffling.  相似文献   

3.
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.  相似文献   

4.
DNA改组的最新动态及应用前景   总被引:1,自引:0,他引:1  
DNA改组(DNA shuffling)是目前最方便、有效的一种分子水平的体外定向进化技术,该技术同倾向错误PCR (Error-prone PCR) 相结合,通过对单基因或相关基因家族的靶序列进行多轮随机诱变、重组和高通量的筛选,可以有效富集正突变,去除负突变,提高突变文库的丰度,创造新基因和获得期望功能的蛋白质。DNA改组技术已在新药物等领域取得了广泛的应用,极大地推动了现代生物科学和生物技术的发展。该技术同计算机强大的数据分析系统相结合,将会为后基因组学的发展提供强有力的技术平台。  相似文献   

5.
6.
[目的]红色亚栖热菌(Meiothermus ruber)海藻糖合酶(Trehalose synthase,M-TreS)将麦芽糖转化生成海藻糖只需一步反应,且具有很好的热稳定性及pH耐受性,是潜在的工业生产海藻糖的酶源.为了提高该酶的性能,有必要对其进行定向进化.[方法]M-TreS基因(M-treS)大小为2 889bp.该蛋白质分子本身具有很大的进化空间,但是却不宜进行全长基因Shuffling.分段DNA shuffling是为大分子蛋白质(基因≥2 000 bp)的进化而设计的一种方法.该方法分为三步:(1)用两对引物分别扩增目的基因的上游片段和下游片段;(2)上下游片段各自进行Shuffling; (3)利用重叠延伸PCR连接上下游突变群,建立完整基因的突变文库.[结果]结合易错PCR,通过该方法经一轮进化获得一株酶活力是野生型1.6倍、催化效率是野生型2倍的突变株.序列分析表明,该突变株共有6个位点发生了氨基酸的替代,其中一个来自易错突变,2个来自同源重组,3个为随机突变.[结论]分段DNA shuffling是进化大分子蛋白质的有效方法.  相似文献   

7.
Summary DNA shuffling is a technique being utilized for in vitro recombination of a single gene or pools of homologous genes. The genes are fragmented into randomly sized pieces, and polymerase chain reaction (PCR) reassembly of full-length genes from the fragments, via self-priming, yields recombination due to PCR template switching. After these PCR products are screened and the interesting products sequenced, improved clones are reshuffled to recombine useful mutations in additive or synergistic ways, in effect mimicking the process of natural sexual recombination. Proteins can be ‘bred’ with the appropriate individual properties and then their ‘progeny’ screened for the desired combination of traits. DNA shuffling is a powerful tool enabling rapid and directed evolution of new genes, operons and whole viral genomes.  相似文献   

8.
Zhao H  Zha W 《Nature protocols》2006,1(4):1865-1871
This protocol describes a directed evolution method for in vitro mutagenesis and recombination of polynucleotide sequences. The staggered extension process (StEP) is essentially a modified PCR that uses highly abbreviated annealing and extension steps to generate staggered DNA fragments and promote crossover events along the full length of the template sequence(s). The resulting library of chimeric polynucleotide sequence(s) is subjected to subsequent high-throughput functional analysis. The recombination efficiency of the StEP method is comparable to that of the most widely used in vitro DNA recombination method, DNA shuffling. However, the StEP method does not require DNA fragmentation and can be carried out in a single tube. This protocol can be completed in 4-6 h.  相似文献   

9.
Directed evolution of proteins by exon shuffling   总被引:18,自引:0,他引:18  
Evolution of eukaryotes is mediated by sexual recombination of parental genomes. Crossovers occur in random, but homologous, positions at a frequency that depends on DNA length. As exons occupy only 1% of the human genome and introns about 24%, by far most of the crossovers occur between exons, rather than inside. The natural process of creating new combinations of exons by intronic recombination is called exon shuffling. Our group is developing in vitro formats for exon shuffling and applying these to the directed evolution of proteins. Based on the splice frame junctions, nine classes of exons and three classes of introns can be distinguished. Splice frame diagrams of natural genes show how the splice frame rules govern exon shuffling. Here, we review various approaches to constructing libraries of exon-shuffled genes. For example, exon shuffling of human pharmaceutical proteins can generate libraries in which all of the sequences are fully human, without the point mutations that raise concerns about immunogenicity.  相似文献   

10.
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64-99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering.  相似文献   

11.
蛋白质定向进化的研究进展   总被引:1,自引:0,他引:1  
定向进化是改造蛋白质分子的一种有效的新策略。主要是在实验室里模拟自然进化过程,通过由易错PCR、致突变菌株诱变等方法对编码蛋白质的基因进行随机诱变,由DNA改组、随机引导重组和交错延伸等方法进行突变基因体外重组,设计高通量筛选方法来选出需要的突变株。它不仅可快速产生工业上有用的新酶,而且对研究蛋白质的结构与功能的关系具有非常重要的意义。  相似文献   

12.
Protein engineers can alter the properties of enzymes by directing their evolution in vitro. Many methods to generate molecular diversity and to identify improved clones have been developed, but experimental evolution remains as much an art as a science. We previously used DNA shuffling (sexual recombination) and a histochemical screen to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with improved beta-galactosidase (BGAL) activity. Here, we employ the same model evolutionary system to test the efficiencies of several other techniques: recursive random mutagenesis (asexual), combinatorial cassette mutagenesis (high-frequency recombination) and a versatile high-throughput microplate screen. GUS variants with altered specificity evolved in each trial, but different combinations of mutagenesis and screening techniques effected the fixation of different beneficial mutations. The new microplate screen identified a broader set of mutations than the previously employed X-gal colony screen. Recursive random mutagenesis produced essentially asexual populations, within which beneficial mutations drove each other into extinction (clonal interference); DNA shuffling and combinatorial cassette mutagenesis led instead to the accumulation of beneficial mutations within a single allele. These results explain why recombinational approaches generally increase the efficiency of laboratory evolution.  相似文献   

13.
Mutant library construction in directed molecular evolution   总被引:1,自引:0,他引:1  
Directed molecular evolution imitates the natural selection process in the laboratory to find mutant proteins with improved properties in the expected aspects by exploring the encoding sequence space. The success of directed molecular evolution experiment depends on the quality of artificially prepared mutant libraries and the availability of convenient high-throughput screening methods. Well-prepared libraries promise the possibility of obtaining desired mutants by screening a library containing a relatively small number of mutants. This article summarizes and reviews the currently available methodologies widely used in directed evolution practices in the hope of providing a general reference for library construction. These methods include error-prone polymerase chain reaction (epPCR), oligonucleotide-based mutagenesis, and genetic recombination exemplified by DNA shuffling and its derivatives. Another designed method is also discussed, in which B-lymphocytes are fooled to mutate nonantibody foreign proteins through somatic hypermutation (SHM).  相似文献   

14.
Anticipatory evolution and DNA shuffling   总被引:1,自引:0,他引:1  
Bacher JM  Reiss BD  Ellington AD 《Genome biology》2002,3(8):reviews1021.1-reviews10214
DNA shuffling has proven to be a powerful technique for the directed evolution of proteins. A mix of theoretical and applied research has now provided insights into how recombination can be guided to more efficiently generate proteins and even organisms with altered functions.  相似文献   

15.
蛋白质定向进化技术是蛋白质分子改造的一个重要策略.重点介绍了易错PCR、DNA改组等对编码蛋白质的基因进行随机突变和重组的技术,以及构建突变体库和高通量筛选的方法,并探讨了定向进化技术在蛋白质工程中的应用及前景.  相似文献   

16.
蛋白质定向进化的研究进展及其应用前景   总被引:2,自引:0,他引:2  
定向进化是改造蛋白质分子的有效新策略.它不需要了解蛋白质的空间结构,主要通过在实验室里模拟自然进化过程,采用错误倾向PCR等方法对编码蛋白质的基因进行随机突变,经DNA改组、交错延伸等技术进行体外重组,设计高通量筛选方法来选出需要的突变体.本综述了定向进化技术的发展及应用.  相似文献   

17.
采用易错聚合酶链反应和DNA改组技术构建野生型梅花鹿过氧化氢酶(CAT)基因的突变体文库,并随机对两种方法所得产物各5个样品做序列测定。序列分析结果表明突变率分别为0.329%和27.58%,易错聚合酶链反应体系的错配率可以比普通PCR体系提高约10倍,DNA改组的突变率则更高,但是难以避免由于突变率太高造成的目的基因无法正确翻译这一情况。另外,应用邻接法(neighbor-joining, NJ)对随机选择的过氧化氢酶基因突变体序列和野生型序列做核酸和蛋白质序列的NJ进化树,进化关系与突变率分析基本一致。  相似文献   

18.
Reducing mutational bias in random protein libraries   总被引:2,自引:0,他引:2  
The success of protein optimization through directed molecular evolution depends to a large extent on the size and quality of the displayed library. Current low-fidelity DNA polymerases that are commonly used during random mutagenesis and recombination in vitro display strong mutational preferences, favoring the substitution of certain nucleotides over others. The result is a biased and reduced functional diversity in the library under selection. In an effort to reduce mutational bias, we combined two different low-fidelity DNA polymerases, Taq and Mutazyme, which have opposite mutational spectra. As a first step, random mutants of the Bacillus thuringiensis cry9Ca1 gene were generated by separate error-prone polymerase chain reactions (PCRs) with each of the two polymerases. Subsequent shuffling by staggered extension process (StEP) of the PCR products resulted in intermediate numbers of AT and GC substitutions, compared to the Taq or Mutazyme error-prone PCR libraries. This strategy should allow generating unbiased libraries or libraries with a specific degree of mutational bias by applying optimal mutagenesis frequencies during error-prone PCR and controlling the concentration of template in the shuffling reaction while taking into account the GC content of the target gene.  相似文献   

19.
为研究蛇毒C型凝集素类蛋白的快速进化机制和结构功能关系 ,使用PCR技术扩增了若干编码C型凝集素类蛋白 β链的cDNA分子以及agkisasinβ的基因组DNA ,并将这些扩增产物进行克隆和测序 .对测序结果与试验过程中的具体条件进行了因果关系分析 ,并且进行点阵图比较和多序列比对 .结果表明 ,可能存在“转录后同源重组”等转录后的事件 ,在蛇毒C型凝集素类蛋白的多样性上起着重要的作用 .对于解释基因数目与蛋白质数目的差异这一后基因组时代的重要问题 ,具有一定的参考价值 .首次报告蛇毒C型凝集素类蛋白的基因组DNA序列 ,其中未发现有内含子  相似文献   

20.
体外分子定向进化研究进展   总被引:19,自引:2,他引:17  
体外定向进化作为近几年发展起来的一种蛋白质改造新策略,可以在未知目标蛋白三维结构信息和作用机制的情况下,通过对编码基因的随机突变、重组和定向筛选,获得具有改进功能或全新功能的蛋白质,使几百万年的自然进化过程在短期内得以实现,因而是发现新的生物活性分子和反应途径的重要方法,已在短短几年内取得了令人瞩目的成就.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号